
MixPert: Optimizing Mixed-Precision Floating-Point
Emulation on GPU Integer Tensor Cores

Zejia Lin
Sun Yat-sen University
Guangzhou, China

linzj39@mail2.sysu.edu.cn

Aoyuan Sun
Sun Yat-sen University
Guangzhou, China

sunaoy@mail2.sysu.edu.cn

Xianwei Zhang∗
Sun Yat-sen University
Guangzhou, China

zhangxw79@mail.sysu.edu.cn

Yutong Lu
Sun Yat-sen University
Guangzhou, China

luyutong@mail.sysu.edu.cn

Abstract
Featuring mixed-precision tensor operations, accelerators
significantly enhance performance for many error-tolerant
computing tasks, but their applicability is limited in scenarios
demanding high precision.While emulating higher-precision
data types from lower-precision ones can bridge this gap,
existing techniques either struggle to achieve sufficient ac-
curacy or incur excessive overhead, inevitably negating per-
formance gains. To mitigate the issue, we propose MixPert,
a novel system that balances performance and accuracy via
optimizing single-precision emulation on GPU Integer Ten-
sor Cores. MixPert devises an efficient data layout and aug-
ments the computation pipeline on Tensor Cores. By deeply
analyzing performance-precision trade-offs, MixPert pro-
vides users with multiple configurations based on accuracy
requirements. Furthermore, MixPert can seamlessly inte-
grate with compilers, facilitating automatic adaptation and
tuning of mixed-precision parameters. Evaluations on real-
world scientific computing and deep learning applications
demonstrate that MixPert achieves an average speedup of
1.72× compared to cuBLAS on general-purpose cores. Be-
yond maintaining improved accuracy, MixPert outperforms
state-of-the-art approaches APE and CUTLASS by 1.22× and
1.21×, respectively.

CCS Concepts: • Theory of computation→Massively
parallel algorithms; • Software and its engineering→
Compilers.

Keywords: GPU, Mixed-precision, Emulation, Tensor Core

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LCTES ’24, June 24, 2024, Copenhagen, Denmark
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0616-5/24/06
https://doi.org/10.1145/3652032.3657567

ACM Reference Format:
Zejia Lin, Aoyuan Sun, Xianwei Zhang, and Yutong Lu. 2024. Mix-
Pert: Optimizing Mixed-Precision Floating-Point Emulation on
GPU Integer Tensor Cores. In Proceedings of the 25th ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES ’24), June 24, 2024, Copen-
hagen, Denmark. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3652032.3657567

1 Introduction
Over the past decade, the increasing arithmetic intensity
of computational workloads has driven a growing demand
for faster processing capabilities. The emergence of error-
tolerant applications such as deep learning [39], which pri-
oritize performance over precision, has spurred the develop-
ment of domain-specific architectures that accelerate general
matrix multiply-accumulate (GEMM) in mixed-precision. Ac-
cordingly, modern GPUs incorporate the tensor-specialized
units featuring such computation, including Nvidia Tensor
Cores [8] and AMD Matrix Cores [5]. These tensor architec-
tures are restricted to lower-precision data types like FP16
and BF16, and achieve up to 4× speedup to FP32 computa-
tion on general-purpose cores (i.e., CUDA Cores) in high-
end GPUs like Nvidia A100 (30× for H200) [10]. To extend
this performance benefit to single-precision computation, a
plethora of emulation techniques have been proposed. These
emulation schemes typically involve splitting and quantizing
the original FP32 numbers into segments of types compati-
ble with the hardware constraints like FP16, BF16 or TF32
[17, 33, 36, 37]. A series of low-precision operations are then
performed on these segments, and the intermediate results
are recombined to produce an FP32 output. However, the
inherent rounding and computational errors associated with
quantization and low-precision operations accumulate as the
matrix size expands, thereby limiting the achievable preci-
sion of these emulation techniques compared to native FP32
computations.
Prior attempts to improve mixed-precision GEMM em-

ulation accuracy have either analyzed rounding errors for
correction [44] or compromised to the platform-specific for-
mat instead of exploring flexible software solutions [7, 47].
These approaches often incur performance overhead and
typically lack portability. For instance, on commodity GPUs
like the Nvidia RTX3090, half-precision Tensor Cores offer

https://orcid.org/0000-0002-7205-4062
https://orcid.org/0009-0004-4686-4493
https://orcid.org/0000-0003-3507-4299
https://orcid.org/0000-0001-5315-3375
https://doi.org/10.1145/3652032.3657567
https://doi.org/10.1145/3652032.3657567
https://doi.org/10.1145/3652032.3657567

LCTES ’24, June 24, 2024, Copenhagen, Denmark Zejia Lin, Aoyuan Sun, Xianwei Zhang and Yutong Lu

only a 2× speedup compared to FP32 CUDA Cores. Emula-
tion methods requiring a minimum of three half-precision
operations would not gain speedup.

In contrast, both modern GPUs comprise substantial per-
formance in INT8 computations within Integer Tensor Cores
(ITCs), with speedups ranging from 8× to 60×, making them
potentially suitable for emulating higher precision opera-
tions across diverse platforms. While integer-based floating-
point emulation has been extensively optimized on CPUs
through compilers [4] and math libraries [16, 18, 24], these
scalar-centric optimizations are not directly applicable to
the tensor-oriented architecture of GPUs. Recent work like
QuanTensor [33] presents a straightforward approach that
quantizes floating-point numbers to INT8 and then refines
the results like previous methods. However, this technique
requires multiple quantization steps, negating the perfor-
mance when recovering full accuracy.
To address the limits of existing emulation techniques,

we propose MixPert, a novel system that leverages high-
performance ITCs to accelerate single-precision computa-
tions. MixPert offers a balance between efficiency and ac-
curacy through a detailed analysis of performance-accuracy
trade-offs andmultiple configurations for varying error thresh-
olds. The system employs fine-grained data packing and
an optimized execution pipeline to enhance performance
while maintaining accuracy. Implemented as a compiler pass,
MixPert seamlessly enables emulation from user-provided
source codes. Additionally, it automates mixed-precision pa-
rameter tuning based on computational dependencies and
user-defined error thresholds, eliminating manual configu-
ration.

In summary, the contributions of this paper are:

• Wehighlight the inefficiency of balancing performance
and precision in existing techniques to emulate high-
precision arithmetic on low-precision hardware.

• We systematically analyze the performance-precision
trade-offs, and propose MixPert to optimize data pack-
ing and emulated computing on Tensor Cores.

• We integrate the design with the compiler to facilitate
automatic enable code transformation and auto-tuning
of mixed-precision configurations.

• The evaluations show that MixPert can effectively
emulate floating-point arithmetic on Integer Tensor
Cores, outperforming the state-of-the-arts while main-
taining reduced error levels.

2 Background & Motivation
2.1 Tensor-specialized Hardware
Modern GPUs excel in general-purpose parallel computation
thanks to their single-instruction multiple-thread (SIMT) ar-
chitecture. Domain-specific architectures further push the
limits of computation power in accelerating GEMM, an essen-
tial operation in many workloads. These tensor-specialized

hardware solutions offer remarkable performance advan-
tages, with the trade-off of being limited to pre-defined,
lower-precision data types. For example, Nvidia GPUs’ Ten-
sor Cores (TCs) do not support the FP32 matrix multiply-
accumulate (MMA) of 𝐷 = 𝐴 × 𝐵 + 𝐶 . Instead, TCs offer
mixed-precision compute primitives where 𝐴 and 𝐵 must be
in FP16, BF16, or TF32 formats, and𝐶 , 𝐷 being FP32 formats.
The multiplication occurs in the corresponding input preci-
sion, then the intermediate result is upcasted to FP32 and
accumulates with the single-precision matrix C, ultimately
producing an FP32 output. Similarly, INT8 multiplication is
also supported, with intermediate results being accumulated
in INT32.

Table 1 details the Nvidia A100 and RTX3090’s theoretical
peak performance for native data types, including their cor-
responding exponent and mantissa bitwidth [8, 9]. All listed
computations except FP32 utilize Tensor Cores, highlight-
ing the continued absence of FP32 optimization on Tensor
Cores in modern GPUs. While low-precision Tensor Cores
offer significant performance gains, they come at the cost of
potential accuracy degradation and overflow. To enable error-
sensitive applications to benefit from this high-performance
hardware, software emulation and error control techniques
are urgently demanded.

2.2 Extended Data Type Emulation
Emulated data types enable computations on hardware lack-
ing native support by quantizing values into smaller, hard-
ware compatible segments. These segments are processed
individually, and the results are recombined to represent the
original data type. For instance, a single-precision (FP32)
value can be represented as two FP16 values by splitting its
mantissa bits as illustrated in Figure 1. The original number
is represented by a sign bit 𝑠 , 8 exponent bits 𝑝 , and 23 man-
tissa bits𝑚 (including an implied leading one) using a binary
radix, as defined by IEEE-754 standard [1] in Equation 1. The

Table 1. Storage format (bits count), underlying computation
type, and performance (TFLOPS/TOPS) of different computa-
tion types. Upper part: theoretical peak performance. Lower
part: measured peak performance.

Data
Type

Exp. &
Mantissa

Underl-
ying Type

A100
Perf.

RTX3090
Perf.

FP32 8:23 SIMT 19.5 29.8
FP16 5:10 TC 312 59.5
BF16 8:7 TC 312 59.5
TF32 8:10 TC 156 29.8
INT8 - TC 624 238

cuBLAS [6] 8:23 FP32 17.7 21.7
CUTLASS [7] 8:21 3× TF32 32.0 13.1
APE [36] 8:23 6× BF16 35.6 12.3

QTensor [33] 8:14 3× INT8 N/A N/A

MixPert: Optimizing Mixed-Precision Floating-Point Emulation on GPU Integer Tensor Cores LCTES ’24, June 24, 2024, Copenhagen, Denmark

Sign Exponent Mantissa

1 7 10 20 Discarded
FP32

FP16
FP16

higher 10-bit mantissa
remaining 10-bit mantissa

Discarded

Figure 1. Representing a single-precision value with two
half-precision numbers, discarding 6 bits in total.

FP32 value 𝑥 is split into two FP16 numbers 𝑥ℎ𝑖 and 𝑥𝑙𝑜 . The
FP32 value is split into 𝑥ℎ𝑖 and 𝑥𝑙𝑜 , with 𝑥ℎ𝑖 containing the
higher-order 10 mantissa bits obtained through primitives
like __half(𝑥). The residual __half(𝑥 − 𝑥ℎ𝑖) stores the re-
maining 10 bits in 𝑥𝑙𝑜 . This preserves 20 mantissa bits and
5 exponent bits. Multiplication of 𝑥𝑦 is then computed as
(𝑥ℎ𝑖 + 𝑥𝑙𝑜) · (𝑦ℎ𝑖 + 𝑦𝑙𝑜) using FP16 operations.

𝑥 = −1𝑠 · (1 +𝑚) · 2𝑝 (1)
Building upon this idea of quantization, recent works

have explored accelerating single-precision GEMM using
low-precision Tensor Cores through emulation. For instance,
APE [36] uses six BF16 multiplications to emulate an FP32
multiplication, CUTLASS [7] leverages three TF32 multipli-
cations for emulation, and QuanTensor [33]1 utilizes nine
INT8 multiplications with accompanying repetitive scaling
and quantization steps. Table 1 summarizes the measured
peak performance, and underlying computations involved
in the emulation methods, and Figure 2 showcases their
speedup on A100 and RTX3090 GPUs, along with the mean
relative error 𝐸𝛾 (defined by Equation 10 in §4.1) compared
to double-precision (FP64). Both CUTLASS and APE deliver
considerable speedup on the A100 platform, achieving 1.98×
and 1.90× respectively. This performance boost is attrib-
uted to the highly optimized mixed-precision support on
A100, which offers 8× to 16× faster performance than FP32.
However, this benefit diminishes on the RTX3090, where
half-precision acceleration is only 2× and no acceleration
for TF32, making these emulation techniques less effective
and even negating the performance.
Analyzing accuracy reveals trade-offs between different

approaches. While APE [36] faithfully represents an FP32
number using three BF16 numbers, its reliance on six BF16
operations per FP32 multiplication introduces excessive cu-
mulative error inherent in BF16, leading to a high mean rela-
tive error of 9.85 × 10−5. In contrast, CUTLASS [7] achieves
lower error than cuBLAS by utilizing the dedicated TF32 for-
mat on high-end Nvidia GPUs. Nevertheless, this hardware-
specific approach falls short on platforms such as the RTX3090,
which lacks optimization for TF32. This underscores its em-
phasis on leveraging hardware-specific advantages, rather

1Denoted as QTensor in the table and figure for brevity. Since Quan-
Tensor is close-sourced and dedicated to Turing architecture, we present
the metrics reported in its paper.

4096 16384
Matrix Size

0

1

2

A
10

0
Sp

ee
du

p

4096 16384
Matrix Size

0

1

2

R
TX

30
90

 S
pe

ed
up

4096 16384
Matrix Size

10
−7

10
−6

10
−5

10
−4

10
−3

QTensor cuBLAS CUTLASS APE

Figure 2. Speedup and mean relative error of GEMM perfor-
mance on square matrices under different sizes.

than addressing the fundamental issues of accuracy in soft-
ware emulation. QuanTensor achieves a 2.5× speedup on
the RTX2080 Ti, but bears a significant error of 6.76 × 10−5
brought by its scaling quantization from floating-point to
8-bit integer (INT8). Its high-resolution variation, aiming
to lower error (1.5 × 10−6) with progressive residual refine-
ment, serves as a proof-of-concept and comes at the cost of
performance penalty (0.83× speedup).

2.3 Challenges to Emulation with Integer
To address the accuracy limitations, one potential solution
is to emulate hardware floating-point operations with fixed-
point arithmetic directly. This approach has been success-
fully implemented in CPU-targeted compilers [4] to support
embedded systems having no floating-point units, and math
libraries [16, 18, 24] to allow for accurate computation in
critic domains [40]. This technique separates the exponent
and mantissa of a floating-point number into integer repre-
sentations. For example, multiplying 𝑥𝑦 can be calculated as
−1𝑠𝑥+𝑠𝑦 · (1 +𝑚𝑥) · (1 +𝑚𝑦) × 2(𝑝𝑥+𝑝𝑦) , where all multiplica-
tions occur in fixed-point arithmetic, eliminating rounding
errors. However, porting this fixed-point emulation to ITCs
requires addressing unique challenges. C1: ITCs only sup-
port INT8 multiplication rather than the widely-used INT32,
adding complexities for computing the 23-bit mantissa parts.
As ITC only offers 8× speedup on commodity GPUs (60× for
high-end), minimizing emulation operations becomes crucial
for compatibility. C2: by breaking down FP32 numbers into
hardware-compatible segments, efficient data layouts and ex-
ecution pipelines are essential for maximizing performance.
C3: for applications that tolerate mixed-precision computa-
tion, the emulation design should offer flexibility for various
accuracy configurations to leverage potential performance
benefits while meeting various accuracy requirements.
The observations above suggest that prior arts featuring

emulation with half-precision floating-point suffer from high
accuracy loss and portability issues, while quantizing with
fixed-point numbers struggles to balance performance and
precision. Distinct from these quantize-and-refine methods,
direct emulating with integers holds promise for leveraging
the powerful speedup provided by ITC while achieving a
superior balance between accuracy and performance for
single-precision GEMM computations on GPUs.

LCTES ’24, June 24, 2024, Copenhagen, Denmark Zejia Lin, Aoyuan Sun, Xianwei Zhang and Yutong Lu

3 Design
In this section, we present MixPert, a novel approach that
addresses the critical challenges of balancing performance
and accuracy during the emulation of floating-point opera-
tions on ITCs. We first provide a detailed theoretical anal-
ysis of this trade-off to guide our approach, then design
fine-grained data packing and emulation pipeline optimized
for ITCs. Beyond solely designing an emulation algorithm,
MixPert effectively searches for the optimal configuration
for each GEMM operation within an application, considering
data dependencies and user-defined precision requirements.
This approach enables fine-grained control over the balance
of speed and accuracy. Finally, MixPert is seamlessly inte-
grated with the compiler, simplifying the process of porting
existing applications to leverage the power of this emerging
hardware.

3.1 Overview
Figure 3 shows the overall workflow of MixPert, which takes
source codes as input, and ultimately generates a new exe-
cutable binary that accelerates floating-point computation
through efficient emulation on ITC. The procedure can be
divided into four phases around the emulation design and
compilation integration: data packer to convert the data, em-
ulation algorithm to operate on the tensor-specialized hard-
ware, code transformer to embed the emulation into source
code, and configuration tuner to search for optimal settings.

In the emulation design, the data packer analyzes and con-
verts input data to fixed-point representations optimized for

OP2

OP3 OP4

OP5

Typecast INT8

1. Data PackerFP32

Reduced
Precision

Preserved Precision

OP1

BIN
1011
0110

3. Code
Transformer

4. Configuration
Tuner

MixPertOriginal Computation

2.
 E

m
ul

at
io

n
A

lg
or

ith
mTensor-Specialized Hardware

DATASRCSRC

Compiler Integration Emulation Design

FP16 INT8

Figure 3. General workflow of MixPert to transform re-
duced precision source code into emulated design with pre-
served accuracy. An additional tuner works offline to profile
and select the proper configuration for each operator.

ITCs, particularly for efficient utilization of the MMA primi-
tives. The emulation algorithm then executes emulation of
floating-point arithmetic on ITCs using the fixed-point rep-
resentations, subsequently reconstructing the results back
to the original data type. In the compiler integration, code
transformer is a compiler optimization pass that identifies
operations suitable for emulation and replaces them with
optimized code segments incorporating data packing and em-
ulation routines. Lastly, the code transformer closely works
with configuration tuner to select the optimal configuration
for each emulation operation, aiming to enhance perfor-
mance under relaxed precision constraints.

The subsequent sections are organized as follows. We first
present the representation and emulation of scalar multiply-
accumulate operations (§3.2), accompanied by a theoretical
analysis of the computational accuracy (§3.2.3). Then we
generalize the design to encompass the emulation and op-
timization of MMA operations on ITCs, including a fine-
grained data packing approach (§3.3.2). Finally, §3.4 details
the implementation of code transformer and configuration
tuner within the compiler.

3.2 Emulating Scalar Multiply-Accumulate
3.2.1 Scalar Representation. We decompose an FP32
value into four INT8 numbers, preserving all exponent bits
and 20 out of 23 mantissa bits. The 8-bit exponent undergoes
direct mapping to a single byte. The remaining 20 mantissa
bits are divided into three segments, preserving the origi-
nal value’s sign bit. The initial segment captures the crucial
higher-order 6 bits, while the subsequent segments handle
7 bits each. Notably, the implied leading one is explicitly
stored in the first segment due to its significance in the em-
ulation approach. Figure 4a illustrates the decomposition.
Formally, given an FP32 element (𝑎) defined by Equation 1,
it is represented as:

𝑎 ≈ −1𝑠 · 2𝑝 · [𝑎0, 𝑎1, 𝑎2] · [2−6, 2−13, 2−20]𝑇 (2)
where 𝑎0, 𝑎1 and 𝑎2 are the segments of mantissa stored in
INT8 format. The round-to-nearest mode is adopted for the
21𝑠𝑡 bit, restricting the precision loss to be less than 2−21.
While the three least significant mantissa bits are discarded,
analysis in Section 3.2.3 demonstrates that this omission is
negligible compared to the inherent rounding errors present
in standard floating-point computations.

3.2.2 Scalar Multiplication. Consider the multiplication
of two FP32 values, 𝑥 and 𝑦, their exponent and mantissa
bits are decomposed using Equation 2, yielding two three-
dimensional vectors representing their mantissa, denoted
as 𝒎𝒙 = [𝑥0, 𝑥1, 𝑥2] and 𝒎𝒚 = [𝑦0, 𝑦1, 𝑦2] respectively. Addi-
tionally, their exponent bits are 𝑝𝑥 and 𝑝𝑦 . The multiplication
can be calculated as:

𝑥 · 𝑦 ≈ −1𝑠𝑥+𝑠𝑦 · 2𝑝𝑥+𝑝𝑦 · 𝒄 · (𝒎𝒙
𝑇𝒎𝒚) · 𝒄𝑇 (3)

MixPert: Optimizing Mixed-Precision Floating-Point Emulation on GPU Integer Tensor Cores LCTES ’24, June 24, 2024, Copenhagen, Denmark

where 𝒄 = [2−6, 2−13, 2−20] for brevity. Notably, this compu-
tation involves the outer product of the operands’ mantissa
vectors 𝒎𝒙

𝑇𝒎𝒚 , therefore:

𝑥 · 𝑦 ≈ −1𝑠𝑥+𝑠𝑦 · 2𝑝𝑥+𝑝𝑦 · 𝒄 ·

𝑥0𝑦0 𝑥0𝑦1 𝑥0𝑦2
𝑥1𝑦0 𝑥1𝑦1 𝑥1𝑦2
𝑥2𝑦0 𝑥2𝑦1 𝑥2𝑦2

 · 𝒄𝑇
= −1𝑠𝑥+𝑠𝑦 · 2𝑝𝑥+𝑝𝑦 ·

2∑︁
𝑖=0

2∑︁
𝑗=0

𝑥𝑖𝑦 𝑗 · 2−7(𝑖+𝑗)−12
(4)

Each term 𝑥𝑖𝑦𝑖 represents a 13-bit integer2, contributing to
the mantissa bits indexed in [7(𝑖 + 𝑗), 7(𝑖 + 𝑗) + 12].
Figure 4b visualizes the accumulation for terms of 𝑥𝑖𝑦2,

namely
∑2

𝑖=0 𝑥𝑖𝑦2 ·2−7(𝑖+𝑗)−12. While data packer discards the
three least significant bits of the mantissa (represented by
𝑥3 and 𝑦3), these bits are included for illustrative purposes
and left-shifted by four to maintain the same bitwidth as the
other segments. Each term 𝑥𝑖𝑦 𝑗 contributes to specific bit
ranges in the final mantissa. For example, 𝑥0𝑦2 occupies bits
indexed in 14-26 (inclusive), and 𝑥1𝑦2 spans in 21-33. Notably,
both 𝑥2𝑦2 and 𝑥3𝑦2 fall outside the 28𝑡ℎ bit, exceeding the
achievable precision of 23mantissa bits in FP32 format. These
terms represent inherent rounding errors in native FP32
multiplication, ignoring these terms would not impact the
final accuracy within the limitations of FP32 precision. This
allows MixPert to calculate only eight out of the nine terms
in Equation 4. Since INT8 ITC offers 32× speedup compared
to FP32 general-purpose cores on A100, this approach yields
a theoretical speedup of 4×, surpassing the 2.7× speedup
compared to previous works leveraging half-precision-based
emulation to achieve the same precision [7, 17, 36].

3.2.3 Accuracy Analysis. To formally analyze the accu-
racy of MixPert’s emulated multiplication, we define a strict
version 𝑥 ′ and 𝑦′ that retains all mantissa bits. This involves
incorporating the discarded bits 𝑥3 into the mantissa vector
𝒎𝒙

′ = [𝑥0, 𝑥1, 𝑥2, 𝑥3], and the same applies for𝒎𝒚
′. Replicat-

ing the steps in Equation 4 yields the strict result of 𝑥 ′ · 𝑦′.
The absolute error between the emulated and strict versions
can be quantified as:

𝑒𝛿 = 2𝑝𝑥+𝑝𝑦 ·
∑︁

𝑥𝑖𝑦 𝑗 · 2−7(𝑖+𝑗)−12, (𝑖 = 3 or 𝑗 = 3) (5)
Leveraging the observation that terms exceeding the 23𝑟𝑑
bit have negligible impact on final accuracy due to FP32
limitations, we generalize this insight to encompass all terms
satisfying 𝑖 + 𝑗 ≥ 4, which correspond to bits beyond the
28𝑡ℎ position. Consequently, the absolute error term 𝑒𝑟𝑟𝛿
simplifies to the numerator in Equation 6, and we define the
relative error 𝑒𝛾 as:

𝑒𝛾 =
(𝑥0𝑦3 + 𝑥3𝑦0) · 2−33

𝑥 ′ · 𝑦′ (6)

2The sign bit is excluded in our analysis for brevity. We assume the
multiplication does not produce a carry bit. However, the analysis is also
applicable when either the carry bit or the sign bit is present.

We analyze the distribution of 𝑒𝛾 by combining the distri-
bution of individual terms. Each term 𝑥𝑖 and 𝑦𝑖 is assumed
to be independent and uniformly distributed, and the arith-
metic operations do not produce a carry bit. The discarded
bits are always rounded towards zeros. Specifically, term 𝑥0
uniformly distributes in [64, ⌊

√
213−1⌋], 𝑥1 and 𝑥2 uniformly

distribute in [0, 127]. Notably, the discarded bits in 𝑥3 are in-
corporated after left-shifting and applying round-to-nearest
in the 20𝑡ℎ bit, resulting in possible values of 0, 16, 32, or 48.
By analyzing the combined distribution of all terms, themath-
ematical expectation of 𝑒𝛾 is approximately 2.82× 10−7, well
below 1.5 × 2−22. In worst case, 𝑒𝛾 ≈ 7.15 × 10−7 < 3 × 2−22.

3.2.4 Scalar Accumulation and Accuracy. Adding up
floating-point numbers with identical exponents involves
directly summating their mantissa parts. However, when
the exponents differ, an alignment process should precede
the summation. This crucial step involves right-shifting the
mantissa of the smaller number by the absolute difference
between the exponents, ensuring the preservation of the
original value’s fidelity. Specifically, the implied leading one
demands consideration during alignment and summation
and data packer already explicitly stored it. Following the
mantissa addition, the resulting value requires shifting and
normalization to comply with the floating-point format.

Figure 5 illustrates the concept of this exponent alignment.
Consider three elements 𝑥 (0) , 𝑥 (1) and 𝑥 (2) , with respective
exponents 𝑝 , 𝑝 + 4 and 𝑝 + 2 and mantissas𝑚1,𝑚2 and𝑚3.
Since the maximum exponent is 𝑝 + 4, to align the exponent
of 𝑣1 to 𝑝 + 4, its mantissa bits need to be shifted by four

16 Discarded

Sign Exponent 23-bit Mantissa

1 10 23
FP32

4×INT8 1
2-720 2-142p

(a) Decomposing FP32 with four INT8s.

13 bits
x0y2

x1y2

x3y2

x2x1x0
y2y1y0

20

1
24 bits

2-7 2-14 2-21

2-28 2-35 2-42
FP32 x
FP32 y

Accumulate

x3

23 bits

y3

x2y2

(b) Part of the emulated multiplication in Equation 4. The accu-
mulated terms

∑2
𝑖=0 𝑥𝑖𝑦2 · 2−7(𝑖+𝑗)−12 are highlighted in red edges.

Gray blocks suggest discarded values.

Figure 4. Representing scalar and emulating its multiplica-
tion with INT8 operations.

LCTES ’24, June 24, 2024, Copenhagen, Denmark Zejia Lin, Aoyuan Sun, Xianwei Zhang and Yutong Lu

Shift
1

1

Exponent

Sign
p + 4

2p+4
1

p + 4
p + 4

2p-3
C

2p-10 2p-18

24 bits

x0Exponent x1 x2

Figure 5. Uniforming exponent bits and shifting mantissa
for accumulation when the exponent bits are different.

positions, resulting in the representation (1 +𝑚1) · 2−4 · 2𝑝+4.
Similarly, 𝑣3 is right-shifted by two positions and represented
as (1 +𝑚3) · 2−2 · 2𝑝+4. The data packer splits the mantissa
into three fragments, which are denoted as 𝒙0, 𝒙1 and 𝒙2. In
the example, the summation produces a carry bit, to convert
the result back to valid FP32 format, the carry bit is encoded
as the implied leading one and the output exponent is 𝑝 + 5.
The mantissa bits that exceed the 24𝑡ℎ bit are rounded to
the 23𝑟𝑑 bit. Since this approach strictly emulates the FP32
scalar accumulation, no extra error is introduced compared
to native floating-point computation.

3.3 Emulating Matrix Multiply-Accumulate
Leveraging ITC requires decomposing the matrix into tiles
of hardware-compatible sizes (e.g. 16 × 32 and 32 × 8), and
invoking the MMA primitives to perform an atomic opera-
tion within each tile. Therefore, adapting the emulation to
these units necessitates pre-processing beforehand, includ-
ing packing data to INT8 format and shifting mantissa to
align exponent, adding complexity to the software pipeline.
In this section, we begin by extending the emulated scalar-
scalar computation to encompass vector-vector operations
between 𝑛-dimensional vectors 𝒙 and 𝒚. Matrix multiplica-
tion can be easily derived from this concept, as each element
in the result matrix is essentially the inner product of its cor-
responding row and column vectors. We then demonstrate
how the emulated computation operates within each tile and
convert the results back to valid FP32 formats. Finally, we
analyze the accuracy of the emulated matrix multiplication.

A00 A01 A02

A10 A12A11

B00

B10

B01

B21

B11

B12

C00

C10

C00

C11

A10 × B00

B10A11

A12 B12

×
×

Align B00
Align A11

INT8

Larger
Exponent

Tmp1

FP32 FP32

Tmp2

Tmp3

C10

=
+

+Cast

3 Mantissa Splitsm

nk

Figure 6. Example to compute 𝐶10 by decomposing matrix
and aligning exponent within different tiles. Matrix A’s man-
tissa segments are stored as row-major, and column-major
for B’s mantissa segments.

3.3.1 Vector Multiplication and Tuning Knobs. Repre-
senting a vector efficiently requires aligning the exponent
bits of its elements for subsequent accumulation operations.
Similar to the concept of exponent alignment of individ-
ual values in Figure 5, an 𝑛-dimensional vector 𝒙 can be
expressed as:

𝒙 ≈ 2𝑝max · [𝒙0, 𝒙1, 𝒙2] · [2−6, 2−13, 2−20]𝑇 (7)
where the sign bits are omitted for brevity, 𝑝max is the max-
imum exponent value in the vector’s elements, 𝒙𝑖 is the
𝑛-dimensional INT8 vector containing the mantissa split
of the elements, each shifted by the difference between its
corresponding element’s exponent and 𝑝max. To emulate 𝑛-
dimensional vector-vector multiplication 𝒙 ·𝒚, 𝑝max is further
set to the maximum exponent value in the two vectors, and
the multiplication can be derived as:

𝒙 · 𝒚 ≈ 2𝑝max ·
𝑙∑︁

𝑖=0

𝑟∑︁
𝑗=0

𝒙𝑖𝒚
𝑇
𝑗 · 2−7(𝑖+𝑗)−12 (8)

where 𝑙 and 𝑟 respectively denotes the number of splits minus
one by data packer . Equation 7 splits 𝒙 into three segments,
so 𝑙 and 𝑟 are set to two. When 𝑙 = 𝑟 = 3, no mantissa bits are
discarded, resulting in full precision emulation, as mentioned
in §3.2.3. Strategically adjusting 𝑙 and 𝑟 based on the error
tolerance allows performance improvements to be traded
with reduced accuracy. For instance, setting 𝑙 = 2 and 𝑟 = 1
implies discarding the least significant 3 mantissa bits from
𝒙 and the least significant 10 bits from 𝒚. This configuration
reduces the required INT8 multiplications to six, achieving a
speedup of 1.3× compared to the default emulation configu-
ration. We define four levels of configuration I - IV, denoting
the combinations of (𝑙, 𝑟) as (1, 1), (1, 2), (2, 1) and (2, 2).

3.3.2 Tiled Data Packing and Computing. For efficient
pipeline to emulate matrix multiply-accumulate of 𝐶 = 𝐴 ×
𝐵, MixPert begins by partitioning the input matrices into
hardware-compatible tiles denoted as 𝐴𝑖𝑘 , 𝐵𝑘 𝑗 , and 𝐶𝑖 𝑗 =∑

𝑘 𝐴𝑖𝑘𝐵𝑘 𝑗 . For each tile pair, the algorithm identifies the
highest exponent present in both operands involved in the
multiplication within that specific tile. Each mantissa value
within the tile is shifted based on the maximum exponent
of its corresponding operand. The mantissa values are effi-
ciently packed into the INT8 format following the exponent-
based shifting. This pre-processed data is then fed into the
hardware’s MMA primitive to perform the actual computa-
tion within each tile and produce an INT32 number. Finally,
the intermediate results are converted back to valid FP32
format by bit operations to incorporate exponent bits and
shift mantissa bits. These results are accumulated to yield
the final output matrix 𝐶 .
As an illustrative example in Figure 6, where matrix A

and B are decomposed into 2 × 3 tiles and 3 × 2 tiles, respec-
tively, resulting in matrix C composed of 2 × 2 tiles. In this
specific case, tiles 𝐴10 and 𝐵10 have larger exponents than
others. To emulate multiplication, we need to shift 𝐵00 to

MixPert: Optimizing Mixed-Precision Floating-Point Emulation on GPU Integer Tensor Cores LCTES ’24, June 24, 2024, Copenhagen, Denmark

Configuration Tuner

SRCSRC

GPU Code
Fatbin

Host (CPU)
IR

LLVM

Dependence
Analyze

C
od

e
Tr

an
sf

or
m

Embed BIN
1011
0110

Data Packer Emu. Algo.

Time

Error

Figure 7. Compiling and precision tuning with MixPert.

align its exponent with 𝐴10 and similarly adjust 𝐴11 with
𝐵10. After performing the MMA instruction, the resulting
INT32 value is converted to FP32 intermediate value 𝑇𝑚𝑝𝑖
and is accumulated to yield the final result 𝐶10. Notably, for
the intermediate result 𝐴00𝐵00 corresponding to 𝐶00, both
operands share the same exponent, obviating the need for
further shifting. This tile-based shifting strategy allows for
a fine-grained approach to data conversion, thereby limiting
the potential for error within individual tiles.

3.3.3 AccuracyAnalysis. In standard floating-point arith-
metic, the inner product of two 𝑘-dimensional vectors incurs
an error bound of 𝑘𝑢, where 𝑢 represents the unit round-off
(e.g., 2−24 for FP32 numbers) [12]. This bound arises due
to rounding errors accumulated during the summation pro-
cess, meaning that the least significant 𝛿 = ⌊log2 𝑘⌋ bits of
the mantissa are rounded. During exponent alignment in
the emulation algorithm, the mantissa smaller operand is
right shifted by 𝛿 ′, the difference between its exponent and
the maximum one, discarding the least significant 𝛿 ′ bits.
However, if 𝛿 ′ ≤ 𝛿 , this discarding does not introduce addi-
tional error as the term falls within the inherent error bound
of floating-point representation. For any element 𝑥𝑖 with
𝛿 ′𝑖 > 𝛿 , its error contribution is (𝛿 ′ − 𝛿)𝑢/𝑘 . The total error
accumulates as:

Δ =

𝑘∑︁
𝑖=0

(𝛿 ′𝑖 − 𝛿)𝑢
𝑘

(9)

In practice, the MMA instruction performs 16× 8× 32matrix
multiplication, i.e., 16 × 32 the left operand and 32 × 8 the
right operand. With 𝑘 = 32 as the accumulated dimension,
the emulation achieves higher accuracy than native FP32
computation if the largest element in the tile is not more than
32 times the smallest. The locality of data distribution ful-
fills this requirement in most cases. However, to handle out-
liers or excessively large distribution ranges, the data packer
identifies these problematic tiles during pre-processing and
switches to a more robust half-precision-based emulation.

3.4 Compiler Integration and Tuning
Applications manifest varying levels of computational com-
plexity and domain-specific accuracy requirements. To alle-
viate the programming burden when applying MixPert to
diverse existing applications, we compose a compiler pass

for code transformation and a corresponding tuner to search
for the optimal configuration. This integration automatically
embeds the emulation design into the source code during
compilation, easing the effort of optimizing these mixed-
precision applications.

Figure 7 shows the implementation framework of MixPert,
based on LLVM Compiler Infrastructure [32]. The source
code for GPU kernels is separated from the host (CPU) code
and individually compiled by the hardware vendor’s com-
piler (e.g., Nvidia’s nvcc) into binary code. Meanwhile, the
compiler’s front-end compiles the host code into an interme-
diate representation (IR). This step also applies to the source
code of the data packer and emulation algorithm implemen-
tations. Following this separation, the code transformer com-
piler pass analyzes data dependencies amongst the GEMM
operations and assigns them unique identifiers. The depen-
dencies are then fed to the configuration tuner to facilitate the
analysis of error propagation among operators. Furthermore,
the transformation pass substitutes the original operators
with our emulated versions by embedding the corresponding
GPU binary code into the IR. This concludes the role of code
transformer and the remaining compilation steps are handled
by the underlying compiler.
To address the need for reduced-precision computation

in applications tolerant of relaxed accuracy constraints, we
introduce a lightweight tuner that optimizes the tuning pa-
rameters in Equation 8 (§3.3.1). Initially, the system profiles
the program, gathering both execution time and mean rela-
tive error (Equation 10). Then it utilizes a greedy algorithm
to incrementally decrease the precision of operators, guided
by the execution time predominance of each operator. If
precision reduction compromises output quality, the tuner
attempts to elevate the precision of the immediate predeces-
sor if its execution time is shorter. This strategy maintains
acceptable output quality while allowing for potential preci-
sion reduction in time-consuming operators.

4 Experimental Evaluation
4.1 Methodology
Platforms:We conduct experiments on a server equipped
with Nvidia A100-PCIe-40GB GPUs, an AMD EPYC 7742 64-
Core CPU and 256GBDRAM. The operating system is Debian
5.10.179 and the version of the Nvidia driver is 545.23.08. We
use LLVM 15.0.7 to implement our code transformation pass,
and the emulation algorithm is materialized with CUTLASS
3.2.1. All GPU programs are compiled using CUDA 11.8.0
with the compiler option -O3 is switched on.

Evaluated Schemes:We compare MixPert against sev-
eral prior arts, including APE (emulation with BF16) [36]
and CUTLASS (emulation with TF32) [7]. Both APE and
CUTLASS are configured in accordance with their officially
suggested parameters for the Ampere architecture [22, 35].
We take cuBLAS’s FP32 implementation [6] as the baseline
and normalize the performance to it.

LCTES ’24, June 24, 2024, Copenhagen, Denmark Zejia Lin, Aoyuan Sun, Xianwei Zhang and Yutong Lu

2
10

2
11

2
12

2
13

2
14

0

1

2

3

Sp
ee

du
p

GEMM
cuBLAS CUTLASS APE MixPert

3072 5120 7168 9216

Sparkler

2
11

2
12

2
13

2
14

2
15

kNN

2
11

2
12

2
13

2
14

2
15

MLP

2
11

2
12

2
13

2
14

2
15

Input Size

0

1

2

Sp
ee

du
p

HPL-AI

2
5

2
6

2
7

2
8

2
9

Input Size

cuBERT

2
12

2
13

2
14

2
15

2
16

Input Size

kMeans

2
12

2
13

2
14

2
15

2
16

Input Size

Cholesky

Figure 8. End-to-end performance of different floating-point computation schemes.

Benchmarks: We conduct experiments using six real-
world applications and a custom-built micro benchmark.
Their domains include linear algebra, genomics computing,
machine learning and deep learning, as briefly described be-
low. HPL-AI [30] is a popular benchmark to assess the mixed-
precision performance of accelerators, leveraging the High-
Performance Linpack (HPL) [13] algorithm. Cholesky factor-
ization [26] is a fundamental linear solver used to decompose
a matrix. Sparkler [27] is a mini-application employed in the
CoMet comparative genomics application [28] for calculat-
ing the correlation coefficient of genes. K-Nearset Neighbors
(kNN) [19] and K-means clustering [29] are widely used sta-
tistical machine learning methods for classification and clus-
tering. cuBERT [15] is a large language model based on the
Bidirectional Encoder Representations from Transformers
(BERT) [14]. Our micro benchmark contains a custom-built
three-layer multilayer perceptron (MLP) [41], and a single
GEMM operation.

Metrics: For performance measurement, we average the
execution time of all GPU kernels with 15 repeated runs. The
timings include all overhead introduced by the emulation
scheme and exclude data transfer time between GPU and
CPU. To evaluate the accuracy, we use mean relative error 𝐸𝛾
defined with Frobenius norm, where 𝑋 is the ground-truth
matrix and 𝑋 ∗ is the emulated result:

𝐸𝛾 (𝑋,𝑋 ∗) = ∥𝑋 − 𝑋 ∗∥𝐹
∥𝑋 ∥𝐹

=

√︁∑(𝑋𝑖 − 𝑋 ∗
𝑖
)2√︃∑

𝑋 2
𝑖

(10)

4.2 Performance
We conduct the evaluationswith input consumption of around
1GB to 15GB of memory for each application. The bench-
marks’ input parameters are configured to be optimal with
cuBLAS. Figure 8 shows the end-to-end performance re-
sults. Overall, MixPert effectively accelerates applications,
outperforming APE and CUTLASS in most cases. Averag-
ing across benchmarks and input sizes, MixPert achieves a
1.72× speedup compared to cuBLAS, while APE and CUT-
LASS achieve 1.41× and 1.45×, respectively. This confirms

the effectiveness of using Integer Tensor Cores for floating-
point computations. Notably, MixPert excels in square ma-
trix GEMM across all input sizes, with performance scaling
well and reaching a 2.71× speedup at an input size of 24576.
This is because the overhead of data packing and restor-
ing becomes less significant compared to the computation
time for larger matrices. Sparkler, with its larger 𝑘 dimen-
sion than𝑚 and 𝑛, further benefits from reduced overhead,
consistently achieving at least a two-fold speedup. While
CUTLASS and APE struggle with HPL-AI’s tall and thin
matrices (i.e., 𝑘 ≪ 𝑚 and 𝑛), MixPert leverages HPL-AI’s
mixed-precision computation by adopting lower precision
for calculations. Although this cannot fully cover the over-
head in the smallest input size, MixPert’s speedup steadily
increases as the matrix size grows. Overall, MixPert demon-
strates broad applicability and performance benefits across
diverse domains.

4.3 Accuracy
In this section, we study the accuracy of the emulation meth-
ods. Figure 9 shows the Frobenius error of four representative
applications, each launched with the same parameters in Fig-
ure 8. We compare the error of GEMM and HPL-AI with

2
10

2
11

2
12

2
13

2
14

10
−7

10
−6

10
−5

10
−4

Er
ro

r

GEMM
cuBLAS CUTLASS APE MixPert

2
11

2
12

2
13

2
14

2
15

10
−7

10
−6

10
−5

10
−4

MLP

2
11

2
12

2
13

2
14

2
15

Input Size

0

1

Er
ro

r

1e−2 HPL-AI

2
12

2
13

2
14

2
15

2
16

Input Size

10
−7

10
−6

10
−5

10
−4

Cholesky

Figure 9.Output error of four benchmarks with the identical
launch configurations in Figure 8.

MixPert: Optimizing Mixed-Precision Floating-Point Emulation on GPU Integer Tensor Cores LCTES ’24, June 24, 2024, Copenhagen, Denmark

double-precision (FP64) computation to provide a compari-
son with cuBLAS’s standard FP32 computation, and report
the error of MLP and Cholesky compared to FP32. In average
of all input sizes, the error of MixPert is significantly lower,
at 4.46× 10−7, compared to cuBLAS (1.14× 10−6), CUTLASS
(4.61×10−7) and APE (7.16×10−5). One key factor contribut-
ing to the higher error in cuBLAS and APE is the accumu-
lation of errors during intermediate result calculations in
low-precision, especially for larger matrices. MixPert effec-
tively mitigates this issue through its fixed-point emulation
approach, which reduces the error introduced by floating-
point operations.
HPL-AI employs the GMRES [45] precision refinement

technique to recover the final solution to 64-bit accuracy. The
accuracy is measured using a scaled residual, which needs
to be less than 16 for valid output. Due to this refinement
step, all methods achieve similar accuracy levels. However,
MixPert leverages this opportunity for mixed-precision com-
putation by reducing the number of mantissa splits in its
emulation, thereby improving performance without com-
promising accuracy. Similar to GEMM, the errors in MLP
and Cholesky factorization for MixPert are well-maintained
around 10−6 and are robust against larger input sizes. This
demonstrates MixPert’s capability to achieve high accuracy
while offering performance benefits.

4.4 Tuning Efficiency
Figure 10 showcases the performance improvements achieved
by the lightweight tuner when we relax error constraints.
Performance is measured as speedup normalized to cuBLAS,
while accuracy is compared against cuBLAS’s results. We
evaluate the tuner in two scenarios. The Cholesky factor-
ization with an input size of 32768 and four GEMM depen-
dencies, and MLP with an input size of 16384 and three
dependent GEMM operations. In both cases, MixPert main-
tains the error within the specified threshold while achieving
speedups comparable to those obtained through an exhaus-
tive search. When the threshold is relaxed to 5 × 10−4 for

0

1

2

Sp
ee
du
p

Cholesky
MixPert Exhaust

0.0

2.5

5.0 MLP

w/o tu
ner − −

×
−

Threshold

10
−6

10
−5

10
−4

Er
ro
r

w/o tu
ner

×
− −

×
−

Threshold

10
−6

10
−5

Figure 10. Speedup and error of Cholesky factorization and
MLP being optimized by the tuner.

Cholesky factorization, all the precision levels are lowered to
the lowest one and gain 25% performance improvement com-
pared to the original precision of MixPert. This exemplifies
the effectiveness of the tuner in identifying optimal precision
configurations that balance performance and accuracy.

4.5 Performance Breakdown
To examine the overhead brought by the emulation algo-
rithms, we profile the programs and analyze their break-
down in Figure 11. MixPert has an average overhead of
11.1%, APE and CUTLASS is 4.29% and 30.5% respectively.
The primary contributor to this overhead in MixPert is the
conversion of intermediate INT32 results back to FP32 dur-
ing accumulation. However, as the matrix size increases, this
overhead becomes less significant. For example, MixPert’s
overhead reduces to 4.24%, manifesting minimal impact on
performance for larger matrices.

4.6 Sensitivity Study
We evaluate how Tensor Core’s performance impacts the
emulation. Figure 12a shows square matrix GEMM’s per-
formance on an Nvidia RTX3090 GPU, which features less
powerful half-precision Tensor Cores compared to the A100
as detailed in Table 1 (§2). Due to the lack of support for half-
precision, both CUTLASS and APE are unable to outperform
cuBLAS on this platform. In contrast, MixPert maintains a
1.12× average speedup over cuBLAS, which even increases
to 1.30× with larger matrices. This demonstrates MixPert’s
adaptability to different hardware capabilities, suggesting
that MixPert can also offer performance benefits on other
commodity accelerators that prioritize INT8 performance.

4096 8192 16384
Size of N

0.0

0.5

1.0

Ex
ec

ut
io

n
Ti

m
e

(%
)

CUTLASS APE MixPert Overhead

4096 8192 16384
Size of N

(a)Matrix Size (𝑁 × 𝑁 × 𝑁). (b) Matrix Size (𝑁 × 𝑁 × 2𝑁).
Figure 11. Execution time breakdown of GEMM.

2
10

2
11

2
12

2
13

2
14

Matrix Size

0.0

0.5

1.0

1.5

Sp
ee

du
p

cuBLAS CUTLASS APE MixPert

1 2 3 4 5 6
Processes

0

1

2

3

(a) Performance of 𝑁 ×𝑁 ×𝑁

GEMM on Nvidia RTX3090.
(b) Performance of Sparkler under
various co-locating processes.

Figure 12. Sensitivity study on different platforms and re-
source constraints.

LCTES ’24, June 24, 2024, Copenhagen, Denmark Zejia Lin, Aoyuan Sun, Xianwei Zhang and Yutong Lu

To evaluate the performance robustness of MixPert un-
der constraint system resource, specifically when multiple
processes share a single GPU, we measure Sparkler’s perfor-
mance with varying Message Passing Interface (MPI) pro-
cesses on one GPU. The results presented in Figure 12b
demonstrate that speedup decreases with increasing pro-
cesses due to limited Tensor Core availability. However,
MixPert maintains significant advantages, outperforming
CUTLASS by 24.3% and APE by 33.9% with five or fewer
processes, showcasing its efficient integer Tensor Core uti-
lization even in shared environments.

4.7 Discussion
The evaluations demonstrate MixPert’s efficacy on existing
Nvidia GPUs , and MixPert can also extends to future genera-
tions [10] or other hardware vendors [5, 46]. These platforms
offer enhanced integer tensor capabilities, boasting up to a
2× speedup compared to their half-precision counterparts.
MixPert leverages its unique focus on integer operations
to achieve a different balance between performance and ac-
curacy, which is not well explored by previous emulations
using half-precision [7, 17, 36]. Moreover, MixPert avoids
the error and overhead associated with triple times of quan-
tization to represent FP32 with INT8s [33], opting instead
for a more efficient splitting and recombination strategy.

While MixPert’s integer-focused emulation excels inmany
scenarios, it acknowledges several limitations. First, repre-
senting data characterized by highly deviated distributions
introduces substantial absorption errors for relatively small
values (§3.3.3). MixPert falls back to the conventional half-
precision-based emulation methodology to maintain accu-
racy. This adaptive strategy incurs a marginal performance
overhead in comparison to techniques that solely implement
half-precision emulation. Second, the emulation overhead
becomes non-negligible when performing GEMM operations
on small matrices. This challenge remains an open question
in prior arts [33, 36], and MixPert does not yet offer a defin-
itive solution. Finally, MixPert uses mean squared relative
error as the error metric, further investigation is needed to
customize it for application-specific metrics. Nonetheless,
MixPert presents a compelling alternative approach, demon-
strating tangible performance improvements, particularly
for large-scale data exhibiting a concentrated distribution.

5 Related Works
5.1 Mixed-precision Emulation
Mixed-precision emulation has been extensively explored to
enable arithmetic operations that lack native hardware sup-
port. On GPUs, Markidis [37] has pioneered using TF32 oper-
ations for GEMM emulation on Tensor Cores, with EGEMM-
TC [17] and CUTLASS [7] further optimizing for this format.
QuanTensor [33] and APE [36] broaden support for data
types and emulation strategies. Ootomo [42] analyzes and

corrects rounding errors in quantum computing, using up
to 91 operations to emulate double-precision GEMM [43].
Frameworks like TVM [11] and QGTC [48] extend emulation
to arbitrary-bitwidth integers on Tensor Cores, specifically
targeting deep learning workloads. On CPUs, the GCC Com-
piler [4] has long supported emulation for embedded systems
lacking floating-point units. Math libraries like MPFR [18],
SoftFloat [24], and CPFloat [16] further optimize emulation
performance on CPUs. Distinguishing from previous works,
MixPert directly emulates floating-point computation on
Tensor Cores without quantization, well-preserving accu-
racy while achieving high performance.

5.2 Mixed-precision Tuning
Mixed-precision tuning has gained popularity as applica-
tions tolerate relaxed error thresholds [2, 23, 34]. It has been
extensively explored targeting both CPU [3, 21] and GPU
[20, 31] applications, well accounted for code pattern and
precision constraints. ADAPT [38] estimates errors based on
operator dependencies, while Gram [25] dynamically selects
precision with high overhead. FPLearner [49] predicts error
and performance using a deep learning model, and Prec-
Tuner [50] optimizes mixed-precision computation within
nested loops. MixPert differs from these dedicated tuners
by focusing on its inherent tunable parameters, offering a
lightweight approach that can be combined with existing
tuners for joint optimization with the emulation.

6 Conclusion
The paper proposes MixPert to accelerate floating-point
emulation on GPU Integer Tensor Cores while keeping the
accuracy of FP32. MixPert efficiently packs data at a granu-
lar level and optimizes the processing pipeline specifically
for Tensor Cores. Additionally, MixPert conducts in-depth
analysis of the trade-offs between performance and pre-
cision, providing more configurations to exploit potential
performance gains under relaxed error constraints. Finally,
MixPert is integrated with compilers to facilitate automatic
emulated design and fine tuning of mixed-precision parame-
ters. Experimental results demonstrate that MixPert effec-
tively balances accuracy and performance, outperforming
the state-of-the-art methods by 1.21×.

Acknowledgments
We express our sincere gratitude to the anonymous review-
ers for their constructive feedback. This research was sup-
ported by the National Natural Science Foundation of China-
#62332021, Major Program of Guangdong Basic and Applied
Research-#2019B030302002, Key-Area Research and Develop-
ment Program of Guangdong Province (No.2021B0101190003),
CCF-Phytium Fund (CCFPhytium202204), and the Funda-
mental Research Funds for the Central Universities, Sun
Yat-sen University (23xkjc016).

MixPert: Optimizing Mixed-Precision Floating-Point Emulation on GPU Integer Tensor Cores LCTES ’24, June 24, 2024, Copenhagen, Denmark

References
[1] 2019. Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Re-

vision of IEEE 754-2008) (2019), 1–84. https://doi.org/10.1109/IEEESTD.
2019.8766229

[2] Ahmad Abdelfattah, Hartwig Anzt, Erik G. Boman, Erin C. Carson,
Terry Cojean, Jack J. Dongarra, Alyson Fox, Mark Gates, Nicholas J.
Higham, Xiaoye S. Li, Jennifer A. Loe, Piotr Luszczek, Srikara Pranesh,
Siva Rajamanickam, Tobias Ribizel, Barry F. Smith, Kasia Swirydow-
icz, Stephen J. Thomas, Stanimire Tomov, Yaohung M. Tsai, and Ul-
rike Meier Yang. 2021. A survey of numerical linear algebra methods
utilizing mixed-precision arithmetic. Int. J. High Perform. Comput.
Appl. 35, 4 (2021). https://doi.org/10.1177/10943420211003313

[3] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev,
Ganesh Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigorous
floating-point mixed-precision tuning. ACM SIGPLAN Notices 52, 1
(2017), 300–315. https://doi.org/10.1145/3009837.3009846

[4] GNU Compiler Collections. 2022. Soft float library routines. https:
//gcc.gnu.org/onlinedocs/gccint/Soft-float-library-routines.html.

[5] AMD Corporation. 2023. Amd cnda 3 architecture. https:
//www.amd.com/content/dam/amd/en/documents/instinct-tech-
docs/white-papers/amd-cdna-3-white-paper.pdf.

[6] Nvidia Corporation. 2014. Cuda basic linear algebra subroutine library
(cublas). https://docs.nvidia.com/cuda/cublas/index.html.

[7] Nvidia Corporation. 2018. Cuda templates for linear algebra subrou-
tines (cutlass). https://github.com/NVIDIA/cutlass.

[8] Nvidia Corporation. 2021. Nvidia A100 tensor core GPU archi-
tecture. https://resources.nvidia.com/en-us-genomics-ep/ampere-
architecture-white-paper.

[9] Nvidia Corporation. 2021. Nvidia ampere ga102 gpu architec-
ture. https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-
gpu-architecture-whitepaper-v2.1.pdf.

[10] Nvidia Corporation. 2022. Nvidia H100 tensor core GPU ar-
chitecture. https://resources.nvidia.com/en-us-tensor-core/gtc22-
whitepaper-hopper.

[11] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and
Luis Ceze. 2020. Automatic generation of high-performance quan-
tized machine learning kernels. In Proceedings of the 18th ACM/IEEE
International Symposium on Code Generation and Optimization. ACM,
305–316. https://doi.org/10.1145/3368826.3377912

[12] Matteo Croci, Massimiliano Fasi, Nicholas J Higham, Theo Mary, and
Mantas Mikaitis. 2022. Stochastic rounding: implementation, error
analysis and applications. Royal Society Open Science 9, 3 (2022), 211631.
https://doi.org/10.1098/rsos.211631

[13] Teresa Davies, Christer Karlsson, Hui Liu, Chong Ding, and Zizhong
Chen. 2011. High performance linpack benchmark: a fault tolerant
implementation without checkpointing. In Proceedings of the 25th
International Conference on Supercomputing. ACM, 162–171. https:
//doi.org/10.1145/1995896.1995923

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Conference of the
North American. Association for Computational Linguistics, 4171–4186.
https://doi.org/10.18653/V1/N19-1423

[15] Liwen Fan, Ruixin Wang, Kuan Fang, and Xian Sun. 2019. Cubert.
https://github.com/zhihu/cuBERT.

[16] Massimiliano Fasi and Mantas Mikaitis. 2023. Cpfloat: a c library for
simulating low-precision arithmetic. ACM Trans. Math. Softw. 49, 2
(2023), 18:1–18:32. https://doi.org/10.1145/3585515

[17] Boyuan Feng, Yuke Wang, Guoyang Chen, Weifeng Zhang, Yuan Xie,
and Yufei Ding. 2021. EGEMM-TC: accelerating scientific computing
on tensor cores with extended precision. In Proceedings of the 26th ACM
SIGPLAN symposium on principles and practice of parallel programming.
ACM, 278–291. https://doi.org/10.1145/3437801.3441599

[18] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier,
and Paul Zimmermann. 2007. Mpfr: a multiple-precision binary
floating-point library with correct rounding. ACM Trans. Math. Softw.
33, 2 (2007), 13–es. https://doi.org/10.1145/1236463.1236468

[19] Vincent Garcia, Eric Debreuve, Frank Nielsen, and Michel Barlaud.
2010. K-nearest neighbor search: fast gpu-based implementations
and application to high-dimensional feature matching. In Proceedings
of the International Conference on Image Processing. IEEE, 3757–3760.
https://doi.org/10.1109/ICIP.2010.5654017

[20] Ruidong Gu and Michela Becchi. 2020. Gpu-fptuner: mixed-precision
auto-tuning for floating-point applications on gpu. In 2020 IEEE 27th
International Conference on High Performance Computing, Data, and
Analytics. IEEE, 294–304. https://doi.org/10.1109/HIPC50609.2020.
00043

[21] Hui Guo and Cindy Rubio-González. 2018. Exploiting community
structure for floating-point precision tuning. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 333–343. https://doi.org/10.1145/3213846.3213862

[22] Manish Gupta. 2022. FP32 emulation via tensor core instruc-
tion. https://github.com/NVIDIA/cutlass/tree/main/examples/27_
ampere_3xtf32_fast_accurate_tensorop_gemm.

[23] Azzam Haidar, Stanimire Tomov, Jack J. Dongarra, and Nicholas J.
Higham. 2018. Harnessing gpu tensor cores for fast fp16 arithmetic
to speed up mixed-precision iterative refinement solvers. In Proceed-
ings of the International Conference for High Performance Comput-
ing, Networking, Storage, and Analysis. IEEE, Article 47, 11 pages.
https://doi.org/10.1109/SC.2018.00050

[24] John Hauser. 2016 (Retrieved 2024.1). Berkeley softfloat. http://www.
jhauser.us/arithmetic/SoftFloat.html.

[25] Nhut-Minh Ho, Himeshi De silva, and Weng-Fai Wong. 2021. Gram:
a framework for dynamically mixing precisions in gpu applications.
ACM Trans. Archit. Code Optim. 18, 2 (2021), 1–24. https://doi.org/10.
1145/3441830

[26] Emmanuel Jeannot. 2012. Performance analysis and optimization
of the tiled cholesky factorization on numa machines. In 2012 Fifth
International Symposium on Parallel Architectures, Algorithms and Pro-
gramming. 210–217. https://doi.org/10.1109/PAAP.2012.38

[27] Wayne Joubert. 2019. Sparkler. https://github.com/wdj/sparkler.
[28] Wayne Joubert, James Nance, Sharlee Climer, Deborah A. Weighill,

and Daniel A. Jacobson. 2019. Parallel accelerated Custom Correlation
Coefficient calculations for genomics applications. Parallel Comput.
84 (2019), 15–23. https://doi.org/10.1016/J.PARCO.2019.02.003

[29] Konstantinos Kallas. 2017. Gpus-kmeans. https://github.com/angelhof/
gpus-kmeans.

[30] Innovative Computing Laboratory. 2019. The High Performance
LINPACK for Accelerator Introspection (HPL-AI) benchmark. https:
//bitbucket.org/icl/hpl-ai/src/main.

[31] Ignacio Laguna, Paul C Wood, Ranvijay Singh, and Saurabh Bagchi.
2019. Gpumixer: performance-driven floating-point tuning for gpu
scientific applications. In High Performance Computing. Springer In-
ternational Publishing, 227–246. https://doi.org/10.1007/978-3-030-
20656-7_12

[32] Chris Lattner and Vikram Adve. 2004. Llvm: a compilation frame-
work for lifelong program analysis & transformation. In Proceed-
ings of the International Symposium on Code Generation and Opti-
mization: Feedback-Directed and Runtime Optimization. IEEE, 75–86.
https://doi.org/10.1109/CGO.2004.1281665

[33] Guangli Li, Jingling Xue, Lei Liu, Xueying Wang, Xiu Ma, Xiao Dong,
Jiansong Li, and Xiaobing Feng. 2021. Unleashing the low-precision
computation potential of tensor cores on GPUs. In Proceedings of
the 2021 IEEE/ACM International Symposium on Code Generation and
Optimization. IEEE, 90–102. https://doi.org/10.1109/CGO51591.2021.
9370335

[34] Hao Lu, Michael Matheson, Vladyslav Oles, Austin Ellis, Wayne Jou-
bert, and Feiyi Wang. 2022. Climbing the summit and pushing the

https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1177/10943420211003313
https://doi.org/10.1145/3009837.3009846
https://gcc.gnu.org/onlinedocs/gccint/Soft-float-library-routines.html
https://gcc.gnu.org/onlinedocs/gccint/Soft-float-library-routines.html
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://docs.nvidia.com/cuda/cublas/index.html
https://github.com/NVIDIA/cutlass
https://resources.nvidia.com/en-us-genomics-ep/ampere-architecture-white-paper
https://resources.nvidia.com/en-us-genomics-ep/ampere-architecture-white-paper
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://doi.org/10.1145/3368826.3377912
https://doi.org/10.1098/rsos.211631
https://doi.org/10.1145/1995896.1995923
https://doi.org/10.1145/1995896.1995923
https://doi.org/10.18653/V1/N19-1423
https://github.com/zhihu/cuBERT
https://doi.org/10.1145/3585515
https://doi.org/10.1145/3437801.3441599
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1109/ICIP.2010.5654017
https://doi.org/10.1109/HIPC50609.2020.00043
https://doi.org/10.1109/HIPC50609.2020.00043
https://doi.org/10.1145/3213846.3213862
https://github.com/NVIDIA/cutlass/tree/main/examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm
https://github.com/NVIDIA/cutlass/tree/main/examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm
https://doi.org/10.1109/SC.2018.00050
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html
https://doi.org/10.1145/3441830
https://doi.org/10.1145/3441830
https://doi.org/10.1109/PAAP.2012.38
https://github.com/wdj/sparkler
https://doi.org/10.1016/J.PARCO.2019.02.003
https://github.com/angelhof/gpus-kmeans
https://github.com/angelhof/gpus-kmeans
https://bitbucket.org/icl/hpl-ai/src/main
https://bitbucket.org/icl/hpl-ai/src/main
https://doi.org/10.1007/978-3-030-20656-7_12
https://doi.org/10.1007/978-3-030-20656-7_12
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370335
https://doi.org/10.1109/CGO51591.2021.9370335

LCTES ’24, June 24, 2024, Copenhagen, Denmark Zejia Lin, Aoyuan Sun, Xianwei Zhang and Yutong Lu

frontier of mixed precision benchmarks at extreme scale. In Pro-
ceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis. IEEE, Article 78, 15 pages.
https://doi.org/10.1109/SC41404.2022.00083

[35] Zixuan Ma. 2022. A GPU FP32 computation method with Tensor Cores.
https://github.com/JohndeVostok/APE.

[36] Zixuan Ma, Haojie Wang, Guanyu Feng, Chen Zhang, Lei Xie, Jiaao
He, Shengqi Chen, and Jidong Zhai. 2022. Efficiently emulating high-
bitwidth computation with low-bitwidth hardware. In Proceedings
of the 36th ACM International Conference on Supercomputing. ACM,
Article 5, 12 pages. https://doi.org/10.1145/3524059.3532377

[37] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng,
and Jeffrey S. Vetter. 2018. Nvidia tensor core programmability, per-
formance & precision. In IEEE International Parallel and Distributed
Processing Symposium Workshops. 522–531. https://doi.org/10.1109/
IPDPSW.2018.00091

[38] HarshithaMenon, Michael O. Lam, Daniel Osei-Kuffuor, Markus Schor-
dan, Scott Lloyd, Kathryn Mohror, and Jeffrey Hittinger. 2018. ADAPT:
algorithmic differentiation applied to floating-point precision tun-
ing. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis. IEEE, Article 48,
13 pages. https://doi.org/10.5555/3291656.3291720

[39] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos,
Erich Elsen, David García, Boris Ginsburg, Michael Houston, Oleksii
Kuchaiev, Ganesh Venkatesh, and Hao Wu. 2018. Mixed precision
training. In 6th International Conference on Learning Representations,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net.

[40] Higinio Mora, María Teresa Signes-Pont, FA Pujol López, J Mora-
Pascual, and JM García Chamizo. 2023. Advancements in number
representation for high-precision computing. The Journal of Super-
computing (2023), 1–20. https://doi.org/10.1007/s11227-023-05814-y

[41] Fionn Murtagh. 1991. Multilayer perceptrons for classification and
regression. Neurocomputing 2, 5 (1991), 183–197. https://doi.org/10.
1016/0925-2312(91)90023-5

[42] Hiryuki Ootomo, Hidetaka Manabe, Kenji Harada, and Rio Yokota.
2023. Quantum circuit simulation by sdgemm emulation on tensor

cores and automatic precision selection. In High Performance Com-
puting, Abhinav Bhatele, Jeff Hammond, Marc Baboulin, and Carola
Kruse (Eds.). Springer Nature Switzerland, 259–276.

[43] Hiroyuki Ootomo, Katsuhisa Ozaki, and Rio Yokota. 2024. DGEMM
on Integer Matrix Multiplication Unit. arXiv:2306.11975 [cs.DC]

[44] Hiroyuki Ootomo and Rio Yokota. 2022. Recovering single precision
accuracy from tensor cores while surpassing the fp32 theoretical peak
performance. Int. J. High Perform. Comput. Appl. 36, 4 (2022), 475–491.
https://doi.org/10.1177/10943420221090256

[45] Youcef Saad and Martin H Schultz. 1986. GMRES: a generalized
minimal residual algorithm for solving nonsymmetric linear sys-
tems. SIAM J. Sci. Stat. Comput. 7, 3 (jul 1986), 856–869. https:
//doi.org/10.5555/14063.14074

[46] Huawei Technologies. 2023. HUAWEI Ascend AI Chipsets. https:
//www.hisilicon.com/en/products/Ascend.

[47] Pedro Valero-Lara, Ian Jorquera, Frank Lui, and Jeffrey Vetter. 2023.
Mixed-Precision S/DGEMM Using the TF32 and TF64 Frameworks on
Low-Precision AI Tensor Cores. ACM, 179–186. https://doi.org/10.
1145/3624062.3624084

[48] Yuke Wang, Boyuan Feng, and Yufei Ding. 2022. QGTC: accelerating
quantized graph neural networks via GPU tensor core. In Proceedings
of the 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. ACM, 107–119. https://doi.org/10.1145/3503221.
3508408

[49] Yutong Wang and Cindy Rubio-González. 2024. Predicting Per-
formance and Accuracy of Mixed-Precision Programs for Precision
Tuning. In Proceedings of the IEEE/ACM 46th International Confer-
ence on Software Engineering. ACM, Article 15, 13 pages. https:
//doi.org/10.1145/3597503.3623338

[50] Jinchen Xu, Guanghui Song, Bei Zhou, Fei Li, Jiangwei Hao, and Jie
Zhao. 2024. A Holistic Approach to Automatic Mixed-Precision Code
Generation and Tuning for Affine Programs. In Proceedings of the 29th
ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming. ACM, 55–67. https://doi.org/10.1145/3627535.3638484

Received 2024-02-29; accepted 2024-04-01

https://doi.org/10.1109/SC41404.2022.00083
https://github.com/JohndeVostok/APE
https://doi.org/10.1145/3524059.3532377
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.5555/3291656.3291720
https://doi.org/10.1007/s11227-023-05814-y
https://doi.org/10.1016/0925-2312(91)90023-5
https://doi.org/10.1016/0925-2312(91)90023-5
https://arxiv.org/abs/2306.11975
https://doi.org/10.1177/10943420221090256
https://doi.org/10.5555/14063.14074
https://doi.org/10.5555/14063.14074
https://www.hisilicon.com/en/products/Ascend
https://www.hisilicon.com/en/products/Ascend
https://doi.org/10.1145/3624062.3624084
https://doi.org/10.1145/3624062.3624084
https://doi.org/10.1145/3503221.3508408
https://doi.org/10.1145/3503221.3508408
https://doi.org/10.1145/3597503.3623338
https://doi.org/10.1145/3597503.3623338
https://doi.org/10.1145/3627535.3638484

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Tensor-specialized Hardware
	2.2 Extended Data Type Emulation
	2.3 Challenges to Emulation with Integer

	3 Design
	3.1 Overview
	3.2 Emulating Scalar Multiply-Accumulate
	3.3 Emulating Matrix Multiply-Accumulate
	3.4 Compiler Integration and Tuning

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Performance
	4.3 Accuracy
	4.4 Tuning Efficiency
	4.5 Performance Breakdown
	4.6 Sensitivity Study
	4.7 Discussion

	5 Related Works
	5.1 Mixed-precision Emulation
	5.2 Mixed-precision Tuning

	6 Conclusion
	Acknowledgments
	References

