KeSCo: Compiler-based Kernel Scheduling
for Multi-task GPU Applications

Zejia Lind", Zewei Mo%*, Xuanteng Huang’,
Xianwei Zhang"*, Yutong Lu’

TSun Yat-sen University, $University of Pittsburgh
Email: linzj39@mail2.sysu.edu.cn

5)FukE AR(YS Bhishrgh

SUN YAT-SEN UNIVERSITY

§ Equal contribution
t Work done when studying at Sun Yat-sen University
Corresponding author

Background

* GPU is mainly known for its data-level parallelism
o Thousands of cores, with thousands of outstanding threads
o Massively parallel computation

* Still need kernel-level parallelism
o GPU is underutilized by a single application process
o Executing independent kernels in parallel = Improve utilization

CPU Issued Kernel Ta‘}k A Tasjk A Ta}k B

GPU Parallel Execution

.i‘ 2 ‘ 29902
SERSA | BISSHIA B33 ’j
siied || Sheves [l soeves

Idle || Idle || Idle

eeeded || svddde || dodede ity || dveiee

2/42

Concurrent Kernel Execution (CKE)

* Techniques
a Vendor provided multi-process service (MPS)!!]
a Stream / Task queue in programming models

* Asynchronous queues in GPU programming models
a CUDA stream / graph!
a HIP stream / graph!?]
a SYCL command queuel3]

o

CUDA MULTI-PROCESS SERVICE CONTROL

) CPU Processes

o

Volta GV100

Stream#Oz Dot(x, Xx) I Dot(y, y)][R%educej

Concurrent

o Stream#2: Dot(y, y) }

Stream #1 Dot (x, x) I Reduce } Perforrgnance

Gain

P

Time

[1] https://docs.nvidia.com/deploy/mps/index.html

GPU Execution

3/42

Example: Transforming Serial Code into CKE

Image process pipeline Assigh kernels to multiple streams

Input (software task queue)

v v v

Blur L Blur S Sharp

¢ v ¢ Stream #1 Blur L Sobel L Combine
Sobel L Sobel S Unsharp

Min 1 =" G e - e 2 -

SXiong Stream #4

Sharp Unsharp

Y + Synchronization Barriers
Combine

\2

Combine

v

Output

4/42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline

Input

Blur L

Sobel L

Y

Blur S

\ A

Sobel S

v

Sharp

v

Unsharp

Extend

VY

Combine

\2

Combine

v

Output

Synchronization Barriers

Pseudo serial code

void Sync_IMG(C ..) {

blur(..);
blur(..);
sharp(..);
sobel(..);
sobel(..);
unsharpen(..
max(..);
minC ..);
extend(..);
combine(..);
combine(..);

);

First glance

11 kernels
Massive dependency
Error-prone refactoring

5/42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo serial code
Input
v v v .
ur ur ar void Sync_IMG(C ..) { . .
T e T blur(..); Non-trivial Efforts
Sobel L Sol;'eIS Unsharp yolurC ..); .
. . sharpC ..); Dependence analysis
¢ v -sobel(..);
Min Max sobel(..);
| | (unsharpen(..
v Cmax(w)
Extend ~»minC ..);
| extend(..);
Y + Synchronization Barriers combi ne();
Combine » combine(..);
’ }
A’
Combine
v
Output

6/42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline

Input
v v v
Blur L Blur S Sharp
¢ ¢
Sobel L Sobel S Unsharp
|
v v
Min Max
[|
v
Extend

Y + Synchronization Barriers
Combine

B
A 4

Combine

v

Output

Pseudo async code

void Async IMG(..) {

// create streams and events
blur()

blur(2, ..); Stream ID
sharp (3, ..);

sobel (1, ..);
sobel (2, ..);

max (4, ..);
min (2, ..);

extend (2, ..);
unsharpen (3, ..);

combine (2, ..);
combine (1, ..);

Non-trivial Efforts

Dependence analysis
Scheduling
Stream assignment

7/42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline

Input
v v v
Blur L Blur S Sharp
¢ y ¢
Sobel L Sobel S Unsharp
|
Min Max |
[|
Extend
Y * Synchronization Barriers
Combine
vy
Combine
Output

Pseudo async code

void Async IMG(..) {

Synchronization
Events & Barriers

\

cudaEventRecord(el, 2);
cudaStreamWaitEvent (4, el);

cudaEventRecord(e2, 4);
cudaStreamWaitEvent (2, e2);

cudaEventRecord(e3, 3);
cudaStreamWaitEvent(2, e3);

Non-trivial Efforts

* Dependence analysis
e Scheduling

* Stream assignment

* Synchronization

cudaEventRecord(e4, 2);
cudaStreamWaitEvent (1, e4);

8/42

Tremendous Programming Burden

Hard to obtain bug-free and performant code

Non-trivial Efforts

* Dependence analysis
2.8x LoC e Scheduling

— * Stream assignment
* Synchronization

9/42

Tremendous Programming Burden (cont.)

* Optimization
o When and where to issue kernel
o Efficient overlap with computation and data transfer

* Optimal scheduling improves performance, comes with
cumbersome manual efforts
o Understanding the code
0 ldentifying optimization opportunities
o Refactoring the code

[1] Nvidia. CUDA C++ Programming Guide
[2] AMD. HIP Runtime API Reference
[3] Khronos. SYCL 2020 Specification 10 / 42

Tremendous Programming Burden (cont.)

* Optimization
o When and where to issue kernel
o Efficient overlap with computation and data transfer

* Optimal scheduling improves performance, comes with
cumbersome manual efforts

Balance?

[1] Nvidia. CUDA C++ Programming Guide
[2] AMD. HIP Runtime API Reference
[3] Khronos. SYCL 2020 Specification 11 / 42

Observation I: Regular Workflow Patterns

Wrap up vendor’s APl to ease multi-tasking
e Taskflow!] = cudaGraph +
e GrSched!?l = cudaStream +

Similar workflow in implementing CKE
€ Dependence analysis

[Taskflow
Q Assign kernel to stream E= GrSched
o _ B8 Async
6 Create synchronization barrier - 15
c -
Q -
£
: o 10—
Stream #1 Blur L Sobel L Combine ’6 i
""" £
Stream #2 Blur S Sobel S Min Extend Combine c 5 .
o -
""" =]
Stream #3 Max Synchronization Barriers Ig 4
i $#* (-
tream #4 Sharp Unsharp B&S M1 M2 Mean
Benchmark
[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems 12 /42

[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021

Observation II: Performance Downgrade

Wrap up vendor’s APl to ease multi-tasking

¢ Taskflowltl = + scheduler implemented in C++ wrapper API
* GrSchedi?l = + scheduler implemented in language VM

Runtime scheduling brings overhead

€ Dependence analysis = Runtime task graph construction
€ Assign kernel to stream — Runtime schedule decision
9 Create synchronization barrier = Also a part of task graph construction
[Taskflow —x— B GrSched —s— B Async
°F B&S i VE i 2 Endto End
sS4 - | S - Avg. Speedup
O S\ WL e | Y 5 - 2.08
Q2 i | . = oy | . - 1.54
Q_ L ’.: x’x‘x—X’ - I.;x B %y |- ./"‘x o Kmpg Ko Kompe=Yomy |
T X {x ----------- x
0 L ' :
Kernels Scheme

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems
[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021

13 /42

Opportunity: Compiler for Automation

Schedule the execution at compile-time

* Automatic dependence analysis
 Compile-time scheduling
e Stream and synchronization management

000
L1l

\ ¢ \ ¢

Laborious work Runtime overhead

(I

Use compiler to automate the workflow
with no runtime overhead

Challenges

Sheduling machanism

* How to acheive competent performance against manual-
optimized code?

Extensibility
* How to co-schedule independent tasks to share GPU?

Code transformation

* How is the design seamlessly integrated into existing compilation
workflow?

15/ 42

KeSCo Overview

Kernel-level Scheduler

Automatically analyze dependency, rearrange
kernels for higher overlap and less synchronization

KeSCo

Task-level Scheduler

Coordinates independent prioritized tasks, extends
the kernel-level scheduler to broader usage

16 /42

KeSCo Overview (cont.)

* DFG (Data Flow Graph) Constructor: analyze kernel dependence

* Kernel Distributor: where the scheduling happens

* Synchronization Generator: guarantees correctness of the

asynchronous execution

¢ Assign Kernels

Identify Data
Source 1. DFG ependénce
Code Constructor
N

2. Kernel to Streams @ @
Dlstrlbutor '

Create Event

BIN
€ |3 Synchromzatlon & Barrier

Generator

C@@

= [

17 /42

Kernel-level Scheduling

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Data Flow Graph Scheduled Kernels

Numbers are their
scheduling order in
the kernel distributor

Level 1

Generated

Barrier
>

Level 2

Removed
Barrier

"~
18/ 42

Level 3

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel F has the least number of predecessors
Data Flow Graph Scheduled Kernels

Numbers are their
Stream 1 scheduling order in

the kernel distributor

v D)
Generated
Stream 2 Barrier
>
Removed

Stream 3 @ @ Barrier
=

19 /42

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel E can only be placed after kernel A
Data Flow Graph Scheduled Kernels

Numbers are their
Stream 1 scheduling order in

the kernel distributor

v D)
Generated
Stream 2 Barrier
>
Removed

Stream 3 @ @ Barrier

20/ 42

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel D positioned in Stream 2 to overlaps with kernel E and F

Data Flow Graph Scheduled Kernels

Stream 1 @ @
Stream 2 a
Stream 3 @ @

Numbers are their
scheduling order in
the kernel distributor

Generated

Barrier
>

Removed
Barrier
\—____

21/42

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel H has the least number of predecessors
Data Flow Graph Scheduled Kernels

| | Numbers are their
Level 1 Q) Stream 1 scheduling order in

the kernel distributor

v D)
Generated
Stream 2 Barrier
>
v, Removed

Level3 (G Stream 3 @ Barrier

22 /42

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Rule applied similar to E
Data Flow Graph Scheduled Kernels

| | Numbers are their
Level 1 Q) Stream 1 scheduling order in

the kernel distributor

v D)
Generated
Stream 2 Barrier
>

Y, , Removed
Level3 (G Stream 3 @ Barrier

23 /42

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Rule applied similar to E
Data Flow Graph Scheduled Kernels

| ~ Numbers are their
Level 1 Q) | Stream 1 scheduling order in

the kernel distributor

v D)
Generated
Stream 2 Barrier
>

v, Removed
Level 3 G ‘ Stream 3 @ 0 Barrier

24 /42

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel G has a redundant barrier
Data Flow Graph Scheduled Kernels

| | Numbers are their
Level 1 Q) Stream 1 scheduling order in

the kernel distributor

v D)
Generated
Stream 2 Barrier
>

Level 2
Removed
Level 3 Stream 3 @ @ @ G Barrier

25/42

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Data Flow Graph Scheduled Kernels

Numbers are their
scheduling order in
the kernel distributor

Level 1

Generated

Barrier
>

Level 2

Removed
Barrier

"~
26 / 42

Level 3

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Details
* Kernel with less predecessors is scheduled firs O

eSCo: - tas x“..\tjlgi\m.‘,,m
PY . K Multi- 2 DO e
S o C oy Tty e e, o8 B g
@ 5 brgo,, o e 1 s Bl
o . o R e .

®* Remove redundant synchronization barrier

per
© te g,
e

L The e

2 g, o
e i

Proces,
5 on e

et ke
ensiple e

KeSCo Overview

KeSCo

Task-level Scheduler

Coordinates independent prioritized tasks, extends
the kernel-level scheduler to broader usage

28 /42

Multiple Workload Scheduling

task A(int priority){ compound_task(){ compound_task(){
<<‘<er‘nel_1<<<...>>>(...) task A(1) (" ™ (B)
Inter-dependent kernel 2<<<..>>>(..) ‘ task B(2) ‘ T %
kerngls (Mkernel 3<<<.>>>(..) task _C(2) (task A © J
............ (D @ G @)
Independent /) task_B(..){ ,—7 } 7 task B '@)
Tasks & R 4 1? \
\ task C(.){ 7 v @
L e task_C (G
N J
'—7 oooooo
...... }
7 7

Independent tasks
are compounded

A task is composed of
inter-dependent kernels

Essentially a larger
task graph

Extending the kernel-level scheduler to support multiple independent workloads
Key idea: Schedules hierarchically, postpone low-priority tasks

29 /42

Multiple Workload Scheduling

Merged Streams

3
©

o
o
®

L J \\

Stream Zones

Hierarchical scheduling

1. Adopt kernel-level scheduling approach
independently for each zone

2. Demotes low-priority task

3. Remove redundant barriers and merge
streams

e~
“—

Stream Zones
00 ¢

()\
\task_A ©)
()
task B g

. J

Original DFG

Priority @ @
O High
O Low @

30/42

KeSCo Overview

Code <>
Clang o
Frontend o
Optimization
Middle-end KESCO

Code Gen v

Backend |_,

Binary @

31/42

Compilation Pipeline Integration

Code

Clang
Frontend

Optimization
Middle-end

Code Gen
Backend

Binary

<>

Impelemented as a set of compiler plugins

for code transformation

Light-weight

7

Code Modification LLVM e KeSCo N
Sub- I, ‘ [DFG Constructor
LI L GPU Code —— SEm——
: Source Fatbi : \: crne BIN
__________ Code » — i|—> : Sl '(__Distributor » X
" Sub- ! Host v Zone i, — ¢
: - (CPU) IR e ; Synchronization
program I\, - :
o ___Generator),
Insert Invocation Vg
Por?ablllty: KeSCo targets CUDA, but can Vendor’s API
easily port to other concurrent task queue-
supported frameworks I

Device _@9@%}

32 /42

Compilation Pipeline Integration (cont.)

& @
©

Serial Code KeSCo
kernel A<0>(...); kernel A<0>(..., 1);
kernel B<0>(...); kernel B<o>(..., 1);
kernel C<0>(...); kernel C<0>(..., 1);

Denotes stream ID (pseudo code for simplicity)

CUDA Stream

kernel A<1>(...);

kernel B<2>(...);
cudaEventRecord(el, 2);
cudaStreamWaitEvent(2, el);
kernel C<1>(...);

__global void axpby(float *Y, int n, float alpha, float *X, float beta,
int outputs = 1, int priority = 1);

1

of writable parameters priority of the kernel (optional)

33/42

Experimental Setup

Platform e Workload!2]
" GPU: Nvidia A100 Name Notation Domain Max DFG Width
= CPU: AMD EPYC 7742 Micro.1 M1 AL p
= CUDA:1144 Micro-2 M2 Al 12
- . Vector Square VEC HPC 2
LLVM: 14.0.0 Black & Scholes B&S HPC 10
Image Processing IMG HPC 3
. Machine Learning ML Al 2
Single process schemes HITS HITS HPC 2
Deep Learning DL Al 2

= Sync: Serial execution

= Async: Manual-opt. CUDA stream execution

| | ®* Multi process schemes
= Taskflow!t: Programming model in C++

= GrSched!?l: Dynamic scheduler in Python

u idi [3]. P .
= KeSCo: Our compiler-based optimization Nvidia MPSE: Multi-process service

= KeSCo: Our compiler-based optimization

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems

[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021
[3] NVIDIA. Multi-process service. https://docs.nvidia.com/deploy/mps/index.html

34 /42

= Baseline: Launching all tasks simultaneously

Speedup w/o Data Prefetch

On average: Competitive performance against manual optimization

1.28x to Serial, 1.16x to Taskflow, 1.31x to GrSched

2.00 7

F==1Serial

VEC B&S

[0 Taskflow

ML HITS IMG
Benchmark

BE= GrSched

22 Async

M1

M2

Bl KeSCo

Mean

35/42

Speedup w/o Data Prefetch (cont.)

Memory occupation 1GB — 10GB
Robust against varying computational demand

o, VEC _ B&S ML
=PEP . s—r———n—n—x|q |
o i e O i == 198 e 3 e 3 s 3 s I s W e 30, |
RE === = SR WSS S S S e
Q]]
NO-T—T—T—"T""TT T T T T T T T T T T T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
o HITS '¢° MG ¢! DL '
2
= - -
8 1 _:{fg‘rz&‘f.;‘?ix — e _: x-:::—x—x_x_x _: §t_ ._#Q — .’.&_ _§m§=§=§
8 ‘_“""—‘_’\0\. - -
NO-T—T"T—T—"T""TT T T T T T T T T T T T T T T
2 4 6 8 101214 4 6 8 10 12 14 16 9 11 13 15 17 19 21
o) M1 1e7 M2 1e3 Input Size 1e3
D st i |] XN R—R—R—R—% Taskflow
T ; 9| - ————+
g 1‘."' '0—‘“‘"‘"—"“' = ‘.“' S S SE A R AR —&— GrSched
o i ——
NOT——T—T—TT T T T T T T T T ®— Async
2 3 4 5 6 7 8 4 6 8 10 12 14 16 —x— KeSCo

Input Size 1e7 Input Size 1e7

36/42

Speedup w/ Data Prefetch

On average: Achieves 93% performance compared to manual optimization
5.01x to Serial, 1.32x to GrSched
Serial BE= GrSched

22 Async HHE KeSCo

o

5.35: 01

N

AN
tr by aabaraald

Speedup

o

B&S M1

Benchmark

37 /42

Speedup in Multiple Independent Tasks

On average: 1.43x to Baseline (uncoordinated execution), 1.22x to MPS
" Priority in decreasing order

= MP-1: IMG + 2xVEC + HITS (~20GB mem.)

= MP-2: ML + DL + B&S (~15GB mem.)

4 Baseline -
o - MPS -
8 1 Il KeSCo JE
2 <~ 4
;’-). . S—m|
_ (7 L/ Ml i
. - ﬁ? :3:3:3% & .
oL X 7 7 B3 A _- | | |
IMG VEC1 VEC2 HITS Al ML DL B&S All

Benchmark Benchmark

38/42

Programming Efforts

v’ Automatic dependency analysis
v Automatic concurrency management
v' No new programming framework

Scheme LoC #Tokens D.A? CM.? NPF PL.¢

Serial 86 378 X X v C++
Async 106 483 X X v C++
Taskflow 173 914 X v X C++
GrSched 366 1832 v v X Python
KeSCo 88 401 v v v C++

* Automatic Dependency Analysis

® Automatic Concurrency Management
® No New Programming Framework

4 Programming Language

39/42

Conclusion

* Engineering burden and performance gap is observed in
implementing concurrent kernel execution with existing
programming models.

* We propose KeSCo, a compiler-based scheduler
» Expose kernel-level concurrency with trivial human efforts
» Low synchronization, load balance scheduling algorithm
» Extensible to multi-process scenario

* KeSCo outperforms the SOTAs with lessened programming efforts.

40/ 42

Thank you

KeSCo: Compiler-based Kernel Scheduling
for Multi-task GPU Applications

Zejia Lin%", Zewei Mo, Xuanteng Huang®, Xianwei Zhang"', Yutong Lu’

TSun Yat-sen University, ¥University of Pittsburgh
Email: linzj39@mail2.sysu.edu.cn

fux® AR(YsU Bhshargh

SUN YAT-SEN UNIVERSITY

§ Equal contribution
t Work done when studying at Sun Yat-sen University
Corresponding author

