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Tensor-Specialized Architectures (TCUs)

• Architectures to accelerate matrix multiply-accumulate (MMA)
q NVIDIA Tensor Core
q AMD Matrix Core
q ...
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Tensor-Specialized Architectures (TCUs)

• Architectures to accelerate matrix multiply-accumulate (MMA)
q NVIDIA Tensor Core
q AMD Matrix Core
q ...

• MMA as hardware primitives
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TCU Trades Precision For Performance

• Compared to general-purpose CUDA Cores
q Limited data type supports
q Performant low-precision computation
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Outline

• To Accelerate FP32 on TCU
q Emulation using multiple low-precision operations

• Challenges For Emulation
q Representation & calculation
q Precision degradation
q Performance tradeoffs

• MixPert: Emulation On Integer TCU
• Evaluation

6 ops 9 ops
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Emulation Degrades Precision

• Prior works use half-precision for emulation
q Example: accelerate FP32 using 3× FP16 multiplications 

range precisionsign
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Emulation Degrades Precision (cont.)

• Quantization rounding introduces error
q 3× FP16 (IPDPSW’18)
q 3× TF32 (PPoPP’21)
q 6× BF16 (ICS’22)

range precisionsign discarded

❶ Scale & Quantization

❷ Mixed-precision MMA

❸ Unscale & De-quantization

540× Precision Degradation
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Exploring INT8’s Potential For Emulation

• Emulation speedup depends on TCU’s performance
q INT8 is 28.5× faster than FP32, and 2.2× faster than BF16
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Exploring INT8’s Potential For Emulation

• Emulation speedup depends on TCU’s performance
q INT8 is 28.5× faster than FP32, and 2.2× faster than BF16

• Can we use INT8 for emulation? How to:
q Represent the values 
q Emulate MMA on TCU
q Balance error and speed
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MixPert – Emulation On Integer Tensor Core

• MixPert uses INT8 for emulation:
q Represent the values ⟹ Pack into 3×INT8 with shared exponents
q Emulate MMA on TCU ⟹ 6-9 emulation steps
q Balance error and speed ⟹ Tuning #steps for given error thresholds
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MixPert – Representing the Values

• Store mantissa bits into three INT8s 
q Preserving 20 out of 23 bits

• Multiplying two scalars with nine INT8 multiplications 
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MixPert – Emulating MMA

• Share exponent bits when values have similar exponents
q Negligible error if data range is smaller than number of elements

• The shared exponent is 
specific to each tile
q Restricts error loss to each tile

9 MMA operations required
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MixPert – Balancing Error And Performance

• Each operator can have different number of emulation steps
q Error-tolerate applications
q Using 6-9 MMAs to speedup

9 MMA operations required
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Methodology

• Platforms
q NVIDIA A100 & RTX3090
q CUDA 11.8.0
q CUTLASS 3.2.1

• Methods
q cuBLAS
q CUTLASS
q APE [ICS’22]
q MixPert

FP32
TF32 ×3
BF16×6
INT8 ×6-8

• Workloads
q 8 applications from Rodinia [IISWC’09], 

APE [ICS’22], and micro-benchmark

Domain Application

Linear algebra
HPL-AI

Cholesky Factorization
Genomics Sparkler

Machine Learning
cuBERT

kNN
kMeans

Micro-bench
GEMM
MLP
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Matrix Multiplication Performance & Error

• Average speedup 2.1× on A100, 1.2× on RTX 3090
• Average error 4.46×10-7 
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Application Performance

• Average speedup 1.6×, up to 2.2×
• HPL-AI and Sparkler uses 6 emulation steps for higher speedup
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Conclusion

• Emulating FP32 on half-precision Tensor Core 
q Imbalanced performance-precision tradeoffs

• MixPert: Emulation On Integer Tensor Core
q Efficient data representation
q Tunable emulation steps

• 1.6× to 2.1× computation speedup with controlled error

SUN YAT-SEN UNIVERSITY Zejia Lin, Aoyuan Sun, Xianwei Zhang, Yutong Lu

Thank You!


