
moTuner: A Compiler-based Auto-tuning
Approach for Mixed-precision Operators

Zewei Mo, Zejia Lin, Xianwei Zhang, Yutong Lu
mozw5@mail2.sysu.edu.cn

Computing Frontiers 2022
May 17th-19th, 2022, Torino, Italy

Agenda
§ Background

q Mixed-precision
q Operator
q Compilation

§ Motivation
§ Design

q Overview
q Data Dependency Analysis
q Setting Tuning

§ Evaluation
§ Summary

2

Mixed-precision
§ A computation with multiple precisions

q Different precision of input and output in a computation

§ Different precision presentations
q Various sizes and unit precisions
q Specific computation hardware
q Software support

Precision Presentation Bit Number Minimum Value Maximum Value Unit Precision

INT8 8 0 1.27 × 10! 1.0 × 10"

BF16 16 1.2 × 10#$% 3.4 × 10$% 3.9 × 10#$

FP16 16 6.1 × 10#& 6.6 × 10' 4.9 × 10#$

FP32 32 1.2 × 10#$% 3.4 × 10$% 6.0 × 10#%

FP64 64 2.2 × 10#$"% 1.8 × 10$"% 1.1 × 10#()

3

Mixed-precision (cont.)
§ Various error in different domain-specific applications

High Precision Data
(e.g. FP64, FP32)

Quantization

𝑋*!

𝑋*"

0

0

Low Precision Data
(e.g. FP16, INT8)

Low Precision Data
(e.g. FP16, INT8)

High Precision Data
(e.g. FP64, FP32)

𝑋*!

𝑋*"

0

0

𝑋*!
0

De-Quantization

Precision
Refinement

Low-precision Computation

Mixed-precision Hardware
(e.g. Tensor Core, Matrix Core)

𝑋*! High precision data

𝑋*" Low precision data

4

Mixed-precision (cont.)
§ A lot of applications take advantages of mixed-precision

Earthquake Prediction
A Fast Scalable Implicit Solver for Nonlinear Time-Evolution Earthquake City Problem on Low-Ordered Unstructured
Finite Elements with Artificial Intelligence and Transprecision Computing

Computational Fluid Dynamic
A Mixed Precision Multicolor Point-Implicit Solver for Unstructured Grids on GPUs

Quantum Transport
A Data-Centric Approach to Extreme-Scale Ab initio

Dissipative Quantum Transport Simulations

Ab initio Molecular Dynamics
Extending the limit of molecular dynamics with ab initio accuracy to 10 billion atoms

Density Functional Theory
Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs)

HPL-AI
Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers

5

Mixed-precision Operator
§ Operator: A function accompolishes specific computation

q General Matrix-Multiply (GEMM)
§ Most widely used in HPC and deep learning applications.

§ Mixed-precision support for operators
q Hardware: GPU, CPU, TPU, NPU, …
q Software: cuBLAS, rocBLAS, MKL, …

6

Mixed-precision Operator (cont.)
Hardware FP64 FP32 FP16 BFloat16 INT8

A100 9.7 TFLOPS
TC: 19.5 TFLOPS

19.5 TFLOPS
TC: 156 TFLOPS

78 TFLOPS
TC: 312 TFLOPS

TC: 312 TFLOPS TC: 624 TFLOPS

MI100 11.5 TFLOPS 23.1 TFLOPS
MC: 46.1 TFLOPS

MC: 184.6 TFLOPS MC: 92.3 TFLOPS MC: 184.6 TOPS

Intel Xeon
Platinum

8180

- 3.57 TFLOPS - - 5.18 TOPS

TPU v3 - - - 90 TFLOPS -

TC: Tensor Core
MC: Matrix Core

7

§ Mixed-precision setting of GEMM operator
q Different input precision and output precision

q Tradeoff between performance and accuracy

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0

20

40

60

80

100

120

INT4 INT8 FP16 FP32

E
rr
or

Ti
m
e

Compilation
§ LLVM: A compiler framework consists of multiple tools

q FrontEnd
q IR generator and optimizer
q Binary generator and optimizer
q Just-in-Time Optimizer
q …

§ Brings operator library into play

§ Provides all static information about program
LLVMClang

opt

LLDB

MLIR

Polly

Bolt

LLD

Jello

8

Compilation (cont.)
§ IR (Intermidiate Representation): Key of Optimization

q Not platform-related
q Function call (e.g. operator) remains in its API form
q SSA (Static Single Assignment)

§ Name of each assignment is unique

§ Optimization Pass
q Data Dependency Analysis
q Code Transform
q …

9

SSA TransformV = 4
Z = V + 5
V = 6
Y= V + 7

V1 = 4
Z1 = V1 + 5
V2 = 6
Y1= V2 + 7

Agenda
§ Background

q Mixed-precision
q Operator
q Compilation

§ Motivation
§ Design

q Overview
q Data Dependency Analysis
q Setting Tuning

§ Evaluation
§ Summary

10

Motivation
§ Much burden comes with using mixed-precision operator

q Customized mixed-precision operator library: five component of mixed-precision
computation

q Modifying source code: replace target operators with mixed-precision ones
q Setting mixed-precision setting parameter

§ Huge setting space for N operators
q Considering 4 settings for each operators
q Total 4- settings

……
{
GEMM(A,B,C,D);
GEMM(D,G,A,F);
GEMM(D,F,G,G);

}

#include “header.h”
……
{
M_GEMM(A,B,C,D,
p1,p2,p3);
M_GEMM(D,G,A,F,
p4,p5,p6);
M_GEMM(D,F,G,G,
p7,p8,p9);
}

Quantitization(…){
// implementation

}
M_GEMM(in,in,in,out,

p1,p2,p3){
// implementation

}

LLVM
System

Mixed-
precision
Program

Shared
Library

FP32/FP32
Program

Operator
Libraries

Source Code

11

§ Different applications demand different accuracy
q An efficient tuning tool is required for different scenarios
q Considering about the following scenario:

§ A output of GEMM is the output of one application
q Density means the occurrence frequency of different error value

0 50 100 150 200 250 300 350 400
Maximum Absolute Error

0.0000

0.0025

0.0050

D
en

si
ty

Strict Threshold

Flexible Threshold

Intolerable Error

Motivation (cont.)

12

Error

Agenda
§ Background

q Mixed-precision
q Operator
q Compilation

§ Motivation
§ Design

q Overview
q Data Dependency Analysis
q Setting Tuning

§ Evaluation
§ Summary

13

Overview

14

Source
Code
Source
Code

Optimized
Executable

File

Marker

Operator
Library

Dumped
File

GPU
Tensor
Core

Cuda
Core

Matrix
Core

GPU Memory

Adjuster

Finalizer

Optimized
IR file

Setting
File

Marker

Adjuster

Finalizer

2

1

3

Optimized
Executable

File

Input

Output

Source
Code

Input

Overview (cont.)
§ Marker

q Unique ID for each operator: order number of first execution and executed count
q Original result and performance of operators

§ Adjuster
q Analyzes related operators
q Optimized efficient search strategy
q Qualified settings without performance downgrade

Linked IR
File

Marker Adjuster Finalizer

identifiers Result Setting Executable
File

15

Data Dependency Analysis
§ Data dependency between operators

q One input variable of an operator is the output of another operator

§ Related operators: have data dependency and execute in given input
q Only setting of related operators should be fixed

Op Op Op

1_1

2_1

3_1

1_2

2_2

3_2

Dumped Identifiers

1_1

2_1

3_1

Dumped Identifiers

16

1

2

3

Levelized Setting
§ Settings with different levels

q High performance comes with low accuracy
q Reduces search space

§ Fix of setting
q Detects error of tuned operators with different settings
q Fixes settings of related operators when an operator introduces intolerable error
q Each time of fix needs a level up of settings

Input Precision Output Precision Performance Rank Accuracy Rank Level

1 FP32 FP32 3rd 1st 3

2 FP16 FP32 2nd 2nd 2

3 INT8 FP32 1st 3rd 1

17

Tuning Process
§ An ordered executed operator list

§ Output and performance of operators from “shadow execution"

§ One operator tuned in each adjustment

§ Extra tuning process to guarantee accuracy

1_1 2_1 3_1 1_2 2_2 3_2

1

2 3

input
output

18

§ For each operator, tries all settings and choose the best one

§ Checks error and performance of tuned operators in each adjusting process

§ Updates settings of related operator when one introduces intolerable error

Operator 1
INT8/FP32

Operator 2
INT8/FP32

Wrapped
Operator 3

Operator 1
FP16/FP32

Operator 2
FP16/FP32

Operator 3
FP16/FP32

Operator 1
FP32/FP32

Operator 2
FP32/FP32

Operator 3
FP32/FP32

Dump

Performance
Errors

Program Program

Settings

Dump Dump

Program
Fourth
Adjusting
Process

Fifth
Adjusting
Process

Performance
Errors

Settings

Performance
Errors

Settings

Tuning Process (cont.)

Input
Precision

Output
Precision

Level

FP32 FP32 3

FP16 FP16 2

INT8 FP32 1

19

1

2

3

Agenda
§ Background

q Mixed-precision
q Operator
q Compilation

§ Motivation
§ Design

q Data Dependency Analysis
q Setting Tuning

§ Evaluation
§ Summary

20

Environment
§ Programs are written in HIP

§ Programs are compiled with –O3

Hardware Software

CPU EPYC 7302
Freq.: 3.0-3.3 GHz

Operating System CentOS 7.9

CPU Memory 256 GB Operator Library hipBLAS@4.3.1
rocSolver@4.3.1

GPU MI100
FP32 Perf.: 46.1 TFLOPS

FP16 Perf.: 184.6 TFLOPS

Compiler HIPCC@4.3.1

GPU Memory 32 GB Backend HIP@4.3.1

21

Benchmarks
§ Micro-benchmark (Micro)

§ Cholesky Factorization (CF)
q Tiled version
q Input setting denoted by (N, t)

§ HPL-AI
q Tiled version
q Input setting denoted by (N, t)
q Validates whether the scaled residual of result matrix is smaller than 16

1 2 3 1 3 4 5 62

1 3 4 5 62 7 8 9

execution
dependency

data
dependency

22

Schemes
§ Baseline: Runs the program in FP32/FP32 precision

§ Exhaust: Exhaustively finds the qualified one with highest performance

§ PriorK: Is aware of error and performance of each setting combination
q Micro: randomly selects the fastest 1% qualified settings

q CF and HPL-AI: randomly selects fastest 50% qualified settings

§ moTuner: Uses moTuner to get the optimized executable file

23

Metrics
§ Performance

q Average of five execution time of whole program (GEMM part for HPL-AI)

§ Accuracy
q Mean related error (MRE): 𝐸.

𝐸. 𝑋, 𝑋/ = 𝑋0123345 − 𝑋0123345/
6

q Maximum absolute error (MAE): 𝐸7

𝐸7 𝑋, 𝑋/ = 𝑋 − 𝑋’ 9/ 𝑋’ 9
§ Automation Efficiency

q Execution count is an objective metric to provide insight of tuning effort
24

Result & Analysis
§ Performance and Accuracy

q moTuner gains 1.92x performance improvement and 97.12% accuracy in average
q moTuner gains 32.26% higher performance than PriorK, only with 2.23% lower accuracy

0

0.5

1

1.5

2

2.5

3

3.5

Micro CF HPL-AI

Sp
ee

du
p

Baseline Exhaust PriorK moTuner

0%

20%

40%

60%

80%

100%

Micro CF HPL-AI
Ac

cu
ra

cy

Baseline Exhaust PriorK moTuner

1.92x 1.92x
1.43x

97.12% 97.12%99.34%

25

§ Automation Efficiency
q Less is better
q Average execution count of moTuner is 0.73
q moTuner reduces up to 81.2% tunning effort and 67.8% in average.

Result & Analysis (cont.)

0

2

4

6

8

10

Micro CF HPL-AI

Tu
ni

ng
 E

ffo
rt

Exhaust PriorK moTuner

81.2%
54.4%

26

§ Micro
q Input setting is denoted as #GEMM and data distribution
q N: Normalized (0,0.5), R: Random (-1,1),U: Uniform (-0.5,0.5)
q moTuner achieves 2.43x speedup and 99.93% accuracy in average

Result & Analysis (cont.)

0
0.5

1
1.5

2
2.5

3
3.5

3N 3U 3R 6N 6U 6R 9U 9R

Sp
ee

du
p

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3N 3U 3R 6N 6U 6R 9U 9R
Ac

cu
ra

cy

2.43x

99.93%

27

§ CF and HPL-AI
q moTuner achieves 1.14x speedup and 99.45% accuracy in average

Result & Analysis (cont.)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

CF(3
2768,4096)

CF(3
2768,8192)

CF(4
0960,10240)

HPL-A
I(1

6384,8192)

HPL-A
I(2

4576,4096)

HPL-A
I(3

2768,1024)

Ac
cu

ra
cy

0

0.5

1

1.5

2

CF(3
2768,4096)

CF(3
2768,8192)

CF(4
0960,10240)

HPL-A
I(1

6384,8192)

HPL-A
I(2

4576,4096)

HPL-A
I(3

2768,1024)

Sp
ee

du
p 1.14x

99.45%

28

Agenda
§ Background

q Mixed-precision
q Operator
q Compilation

§ Motivation
§ Design

q Data Dependency Analysis
q Setting Tuning

§ Evaluation
§ Summary

29

Summary
§ moTuner: An auto-tuning approach aiming at mixed-precision operators

§ Basic Design:
q Finds related operators for one under every given input
q Upgrades settings of related operators when intolerable error occurs

§ Result:
q Provides 1.92x speedup and 97.12% accuracy in average
q Has great robustness in different scenarios

§ Future work:
q Support more complex operators on various hardware in future

30

Thank you

moTuner: https://github.com/MoZeWei/moTuner

moTuner: A Compiler-based Auto-tuning Approach
for Mixed-precision Operators
Zewei Mo, Zejia Lin, Xianwei Zhang, Yutong Lu

mozw5@mail2.sysu.edu.cn

31

https://github.com/MoZeWei/moTuner

Backup Slides

Compilation (cont.)
§ All executable files are generated through compilation from source code

*.cpp
Compiler Assem-

bler Linker

Operator
Library

Front
End Passes Code

Gen

*.outPre-
processor

.o.s*.i

.s.bc*.bc*.i

LLVM System

Optimization

33

